123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import numpy as np
- from ..utils import LOGGER
- from ..utils.ops import xywh2ltwh
- from .basetrack import BaseTrack, TrackState
- from .utils import matching
- from .utils.kalman_filter import KalmanFilterXYAH
- class STrack(BaseTrack):
- """
- Single object tracking representation that uses Kalman filtering for state estimation.
- This class is responsible for storing all the information regarding individual tracklets and performs state updates
- and predictions based on Kalman filter.
- Attributes:
- shared_kalman (KalmanFilterXYAH): Shared Kalman filter that is used across all STrack instances for prediction.
- _tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
- kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
- mean (np.ndarray): Mean state estimate vector.
- covariance (np.ndarray): Covariance of state estimate.
- is_activated (bool): Boolean flag indicating if the track has been activated.
- score (float): Confidence score of the track.
- tracklet_len (int): Length of the tracklet.
- cls (Any): Class label for the object.
- idx (int): Index or identifier for the object.
- frame_id (int): Current frame ID.
- start_frame (int): Frame where the object was first detected.
- Methods:
- predict(): Predict the next state of the object using Kalman filter.
- multi_predict(stracks): Predict the next states for multiple tracks.
- multi_gmc(stracks, H): Update multiple track states using a homography matrix.
- activate(kalman_filter, frame_id): Activate a new tracklet.
- re_activate(new_track, frame_id, new_id): Reactivate a previously lost tracklet.
- update(new_track, frame_id): Update the state of a matched track.
- convert_coords(tlwh): Convert bounding box to x-y-aspect-height format.
- tlwh_to_xyah(tlwh): Convert tlwh bounding box to xyah format.
- Examples:
- Initialize and activate a new track
- >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
- >>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
- """
- shared_kalman = KalmanFilterXYAH()
- def __init__(self, xywh, score, cls):
- """
- Initialize a new STrack instance.
- Args:
- xywh (List[float]): Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where
- (x, y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id.
- score (float): Confidence score of the detection.
- cls (Any): Class label for the detected object.
- Examples:
- >>> xywh = [100.0, 150.0, 50.0, 75.0, 1]
- >>> score = 0.9
- >>> cls = "person"
- >>> track = STrack(xywh, score, cls)
- """
- super().__init__()
- # xywh+idx or xywha+idx
- assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
- self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
- self.score = score
- self.tracklet_len = 0
- self.cls = cls
- self.idx = xywh[-1]
- self.angle = xywh[4] if len(xywh) == 6 else None
- def predict(self):
- """Predicts the next state (mean and covariance) of the object using the Kalman filter."""
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
- @staticmethod
- def multi_predict(stracks):
- """Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
- if len(stracks) <= 0:
- return
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
- @staticmethod
- def multi_gmc(stracks, H=np.eye(2, 3)):
- """Update state tracks positions and covariances using a homography matrix for multiple tracks."""
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- R = H[:2, :2]
- R8x8 = np.kron(np.eye(4, dtype=float), R)
- t = H[:2, 2]
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- mean = R8x8.dot(mean)
- mean[:2] += t
- cov = R8x8.dot(cov).dot(R8x8.transpose())
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def activate(self, kalman_filter, frame_id):
- """Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
- self.kalman_filter = kalman_filter
- self.track_id = self.next_id()
- self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- if frame_id == 1:
- self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- def re_activate(self, new_track, frame_id, new_id=False):
- """Reactivates a previously lost track using new detection data and updates its state and attributes."""
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.convert_coords(new_track.tlwh)
- )
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id:
- self.track_id = self.next_id()
- self.score = new_track.score
- self.cls = new_track.cls
- self.angle = new_track.angle
- self.idx = new_track.idx
- def update(self, new_track, frame_id):
- """
- Update the state of a matched track.
- Args:
- new_track (STrack): The new track containing updated information.
- frame_id (int): The ID of the current frame.
- Examples:
- Update the state of a track with new detection information
- >>> track = STrack([100, 200, 50, 80, 0.9, 1])
- >>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
- >>> track.update(new_track, 2)
- """
- self.frame_id = frame_id
- self.tracklet_len += 1
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.convert_coords(new_tlwh)
- )
- self.state = TrackState.Tracked
- self.is_activated = True
- self.score = new_track.score
- self.cls = new_track.cls
- self.angle = new_track.angle
- self.idx = new_track.idx
- def convert_coords(self, tlwh):
- """Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
- return self.tlwh_to_xyah(tlwh)
- @property
- def tlwh(self):
- """Returns the bounding box in top-left-width-height format from the current state estimate."""
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
- @property
- def xyxy(self):
- """Converts bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
- @staticmethod
- def tlwh_to_xyah(tlwh):
- """Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
- @property
- def xywh(self):
- """Returns the current position of the bounding box in (center x, center y, width, height) format."""
- ret = np.asarray(self.tlwh).copy()
- ret[:2] += ret[2:] / 2
- return ret
- @property
- def xywha(self):
- """Returns position in (center x, center y, width, height, angle) format, warning if angle is missing."""
- if self.angle is None:
- LOGGER.warning("WARNING ⚠️ `angle` attr not found, returning `xywh` instead.")
- return self.xywh
- return np.concatenate([self.xywh, self.angle[None]])
- @property
- def result(self):
- """Returns the current tracking results in the appropriate bounding box format."""
- coords = self.xyxy if self.angle is None else self.xywha
- return coords.tolist() + [self.track_id, self.score, self.cls, self.idx]
- def __repr__(self):
- """Returns a string representation of the STrack object including start frame, end frame, and track ID."""
- return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
- class BYTETracker:
- """
- BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
- Responsible for initializing, updating, and managing the tracks for detected objects in a video sequence.
- It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman filtering for predicting
- the new object locations, and performs data association.
- Attributes:
- tracked_stracks (List[STrack]): List of successfully activated tracks.
- lost_stracks (List[STrack]): List of lost tracks.
- removed_stracks (List[STrack]): List of removed tracks.
- frame_id (int): The current frame ID.
- args (Namespace): Command-line arguments.
- max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
- kalman_filter (KalmanFilterXYAH): Kalman Filter object.
- Methods:
- update(results, img=None): Updates object tracker with new detections.
- get_kalmanfilter(): Returns a Kalman filter object for tracking bounding boxes.
- init_track(dets, scores, cls, img=None): Initialize object tracking with detections.
- get_dists(tracks, detections): Calculates the distance between tracks and detections.
- multi_predict(tracks): Predicts the location of tracks.
- reset_id(): Resets the ID counter of STrack.
- joint_stracks(tlista, tlistb): Combines two lists of stracks.
- sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list.
- remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IoU.
- Examples:
- Initialize BYTETracker and update with detection results
- >>> tracker = BYTETracker(args, frame_rate=30)
- >>> results = yolo_model.detect(image)
- >>> tracked_objects = tracker.update(results)
- """
- def __init__(self, args, frame_rate=30):
- """
- Initialize a BYTETracker instance for object tracking.
- Args:
- args (Namespace): Command-line arguments containing tracking parameters.
- frame_rate (int): Frame rate of the video sequence.
- Examples:
- Initialize BYTETracker with command-line arguments and a frame rate of 30
- >>> args = Namespace(track_buffer=30)
- >>> tracker = BYTETracker(args, frame_rate=30)
- """
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
- self.frame_id = 0
- self.args = args
- self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
- self.kalman_filter = self.get_kalmanfilter()
- self.reset_id()
- def update(self, results, img=None):
- """Updates the tracker with new detections and returns the current list of tracked objects."""
- self.frame_id += 1
- activated_stracks = []
- refind_stracks = []
- lost_stracks = []
- removed_stracks = []
- scores = results.conf
- bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
- # Add index
- bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
- cls = results.cls
- remain_inds = scores >= self.args.track_high_thresh
- inds_low = scores > self.args.track_low_thresh
- inds_high = scores < self.args.track_high_thresh
- inds_second = inds_low & inds_high
- dets_second = bboxes[inds_second]
- dets = bboxes[remain_inds]
- scores_keep = scores[remain_inds]
- scores_second = scores[inds_second]
- cls_keep = cls[remain_inds]
- cls_second = cls[inds_second]
- detections = self.init_track(dets, scores_keep, cls_keep, img)
- # Add newly detected tracklets to tracked_stracks
- unconfirmed = []
- tracked_stracks = [] # type: list[STrack]
- for track in self.tracked_stracks:
- if not track.is_activated:
- unconfirmed.append(track)
- else:
- tracked_stracks.append(track)
- # Step 2: First association, with high score detection boxes
- strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
- # Predict the current location with KF
- self.multi_predict(strack_pool)
- if hasattr(self, "gmc") and img is not None:
- warp = self.gmc.apply(img, dets)
- STrack.multi_gmc(strack_pool, warp)
- STrack.multi_gmc(unconfirmed, warp)
- dists = self.get_dists(strack_pool, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
- for itracked, idet in matches:
- track = strack_pool[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_stracks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # Step 3: Second association, with low score detection boxes association the untrack to the low score detections
- detections_second = self.init_track(dets_second, scores_second, cls_second, img)
- r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
- # TODO
- dists = matching.iou_distance(r_tracked_stracks, detections_second)
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
- for itracked, idet in matches:
- track = r_tracked_stracks[itracked]
- det = detections_second[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_stracks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- for it in u_track:
- track = r_tracked_stracks[it]
- if track.state != TrackState.Lost:
- track.mark_lost()
- lost_stracks.append(track)
- # Deal with unconfirmed tracks, usually tracks with only one beginning frame
- detections = [detections[i] for i in u_detection]
- dists = self.get_dists(unconfirmed, detections)
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
- for itracked, idet in matches:
- unconfirmed[itracked].update(detections[idet], self.frame_id)
- activated_stracks.append(unconfirmed[itracked])
- for it in u_unconfirmed:
- track = unconfirmed[it]
- track.mark_removed()
- removed_stracks.append(track)
- # Step 4: Init new stracks
- for inew in u_detection:
- track = detections[inew]
- if track.score < self.args.new_track_thresh:
- continue
- track.activate(self.kalman_filter, self.frame_id)
- activated_stracks.append(track)
- # Step 5: Update state
- for track in self.lost_stracks:
- if self.frame_id - track.end_frame > self.max_time_lost:
- track.mark_removed()
- removed_stracks.append(track)
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
- self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
- self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
- self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
- self.lost_stracks.extend(lost_stracks)
- self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
- self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
- self.removed_stracks.extend(removed_stracks)
- if len(self.removed_stracks) > 1000:
- self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
- return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)
- def get_kalmanfilter(self):
- """Returns a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
- return KalmanFilterXYAH()
- def init_track(self, dets, scores, cls, img=None):
- """Initializes object tracking with given detections, scores, and class labels using the STrack algorithm."""
- return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections
- def get_dists(self, tracks, detections):
- """Calculates the distance between tracks and detections using IoU and optionally fuses scores."""
- dists = matching.iou_distance(tracks, detections)
- if self.args.fuse_score:
- dists = matching.fuse_score(dists, detections)
- return dists
- def multi_predict(self, tracks):
- """Predict the next states for multiple tracks using Kalman filter."""
- STrack.multi_predict(tracks)
- @staticmethod
- def reset_id():
- """Resets the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
- STrack.reset_id()
- def reset(self):
- """Resets the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
- self.frame_id = 0
- self.kalman_filter = self.get_kalmanfilter()
- self.reset_id()
- @staticmethod
- def joint_stracks(tlista, tlistb):
- """Combines two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
- @staticmethod
- def sub_stracks(tlista, tlistb):
- """Filters out the stracks present in the second list from the first list."""
- track_ids_b = {t.track_id for t in tlistb}
- return [t for t in tlista if t.track_id not in track_ids_b]
- @staticmethod
- def remove_duplicate_stracks(stracksa, stracksb):
- """Removes duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist < 0.15)
- dupa, dupb = [], []
- for p, q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i, t in enumerate(stracksa) if i not in dupa]
- resb = [t for i, t in enumerate(stracksb) if i not in dupb]
- return resa, resb
|