123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- #include "inference.h"
- #include <regex>
- #define benchmark
- #define min(a,b) (((a) < (b)) ? (a) : (b))
- YOLO_V8::YOLO_V8() {
- }
- YOLO_V8::~YOLO_V8() {
- delete session;
- }
- #ifdef USE_CUDA
- namespace Ort
- {
- template<>
- struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
- }
- #endif
- template<typename T>
- char* BlobFromImage(cv::Mat& iImg, T& iBlob) {
- int channels = iImg.channels();
- int imgHeight = iImg.rows;
- int imgWidth = iImg.cols;
- for (int c = 0; c < channels; c++)
- {
- for (int h = 0; h < imgHeight; h++)
- {
- for (int w = 0; w < imgWidth; w++)
- {
- iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
- (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
- }
- }
- }
- return RET_OK;
- }
- char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
- {
- if (iImg.channels() == 3)
- {
- oImg = iImg.clone();
- cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
- }
- else
- {
- cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB);
- }
- switch (modelType)
- {
- case YOLO_DETECT_V8:
- case YOLO_POSE:
- case YOLO_DETECT_V8_HALF:
- case YOLO_POSE_V8_HALF://LetterBox
- {
- if (iImg.cols >= iImg.rows)
- {
- resizeScales = iImg.cols / (float)iImgSize.at(0);
- cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales)));
- }
- else
- {
- resizeScales = iImg.rows / (float)iImgSize.at(0);
- cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1)));
- }
- cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3);
- oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows)));
- oImg = tempImg;
- break;
- }
- case YOLO_CLS://CenterCrop
- {
- int h = iImg.rows;
- int w = iImg.cols;
- int m = min(h, w);
- int top = (h - m) / 2;
- int left = (w - m) / 2;
- cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
- break;
- }
- }
- return RET_OK;
- }
- char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) {
- char* Ret = RET_OK;
- std::regex pattern("[\u4e00-\u9fa5]");
- bool result = std::regex_search(iParams.modelPath, pattern);
- if (result)
- {
- Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters.";
- std::cout << Ret << std::endl;
- return Ret;
- }
- try
- {
- rectConfidenceThreshold = iParams.rectConfidenceThreshold;
- iouThreshold = iParams.iouThreshold;
- imgSize = iParams.imgSize;
- modelType = iParams.modelType;
- env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
- Ort::SessionOptions sessionOption;
- if (iParams.cudaEnable)
- {
- cudaEnable = iParams.cudaEnable;
- OrtCUDAProviderOptions cudaOption;
- cudaOption.device_id = 0;
- sessionOption.AppendExecutionProvider_CUDA(cudaOption);
- }
- sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
- sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads);
- sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel);
- #ifdef _WIN32
- int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), nullptr, 0);
- wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
- MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), wide_cstr, ModelPathSize);
- wide_cstr[ModelPathSize] = L'\0';
- const wchar_t* modelPath = wide_cstr;
- #else
- const char* modelPath = iParams.modelPath.c_str();
- #endif // _WIN32
- session = new Ort::Session(env, modelPath, sessionOption);
- Ort::AllocatorWithDefaultOptions allocator;
- size_t inputNodesNum = session->GetInputCount();
- for (size_t i = 0; i < inputNodesNum; i++)
- {
- Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
- char* temp_buf = new char[50];
- strcpy(temp_buf, input_node_name.get());
- inputNodeNames.push_back(temp_buf);
- }
- size_t OutputNodesNum = session->GetOutputCount();
- for (size_t i = 0; i < OutputNodesNum; i++)
- {
- Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
- char* temp_buf = new char[10];
- strcpy(temp_buf, output_node_name.get());
- outputNodeNames.push_back(temp_buf);
- }
- options = Ort::RunOptions{ nullptr };
- WarmUpSession();
- return RET_OK;
- }
- catch (const std::exception& e)
- {
- const char* str1 = "[YOLO_V8]:";
- const char* str2 = e.what();
- std::string result = std::string(str1) + std::string(str2);
- char* merged = new char[result.length() + 1];
- std::strcpy(merged, result.c_str());
- std::cout << merged << std::endl;
- delete[] merged;
- return "[YOLO_V8]:Create session failed.";
- }
- }
- char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult) {
- #ifdef benchmark
- clock_t starttime_1 = clock();
- #endif // benchmark
- char* Ret = RET_OK;
- cv::Mat processedImg;
- PreProcess(iImg, imgSize, processedImg);
- if (modelType < 4)
- {
- float* blob = new float[processedImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) };
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
- }
- else
- {
- #ifdef USE_CUDA
- half* blob = new half[processedImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
- #endif
- }
- return Ret;
- }
- template<typename N>
- char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
- std::vector<DL_RESULT>& oResult) {
- Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
- inputNodeDims.data(), inputNodeDims.size());
- #ifdef benchmark
- clock_t starttime_2 = clock();
- #endif // benchmark
- auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
- outputNodeNames.size());
- #ifdef benchmark
- clock_t starttime_3 = clock();
- #endif // benchmark
- Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
- auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
- std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
- auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
- delete[] blob;
- switch (modelType)
- {
- case YOLO_DETECT_V8:
- case YOLO_DETECT_V8_HALF:
- {
- int signalResultNum = outputNodeDims[1];//84
- int strideNum = outputNodeDims[2];//8400
- std::vector<int> class_ids;
- std::vector<float> confidences;
- std::vector<cv::Rect> boxes;
- cv::Mat rawData;
- if (modelType == YOLO_DETECT_V8)
- {
- // FP32
- rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
- }
- else
- {
- // FP16
- rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
- rawData.convertTo(rawData, CV_32F);
- }
- // Note:
- // ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape
- // https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt
- rawData = rawData.t();
- float* data = (float*)rawData.data;
- for (int i = 0; i < strideNum; ++i)
- {
- float* classesScores = data + 4;
- cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
- cv::Point class_id;
- double maxClassScore;
- cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
- if (maxClassScore > rectConfidenceThreshold)
- {
- confidences.push_back(maxClassScore);
- class_ids.push_back(class_id.x);
- float x = data[0];
- float y = data[1];
- float w = data[2];
- float h = data[3];
- int left = int((x - 0.5 * w) * resizeScales);
- int top = int((y - 0.5 * h) * resizeScales);
- int width = int(w * resizeScales);
- int height = int(h * resizeScales);
- boxes.push_back(cv::Rect(left, top, width, height));
- }
- data += signalResultNum;
- }
- std::vector<int> nmsResult;
- cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
- for (int i = 0; i < nmsResult.size(); ++i)
- {
- int idx = nmsResult[i];
- DL_RESULT result;
- result.classId = class_ids[idx];
- result.confidence = confidences[idx];
- result.box = boxes[idx];
- oResult.push_back(result);
- }
- #ifdef benchmark
- clock_t starttime_4 = clock();
- double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
- double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
- double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable)
- {
- std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
- }
- else
- {
- std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
- }
- #endif // benchmark
- break;
- }
- case YOLO_CLS:
- case YOLO_CLS_HALF:
- {
- cv::Mat rawData;
- if (modelType == YOLO_CLS) {
- // FP32
- rawData = cv::Mat(1, this->classes.size(), CV_32F, output);
- } else {
- // FP16
- rawData = cv::Mat(1, this->classes.size(), CV_16F, output);
- rawData.convertTo(rawData, CV_32F);
- }
- float *data = (float *) rawData.data;
- DL_RESULT result;
- for (int i = 0; i < this->classes.size(); i++)
- {
- result.classId = i;
- result.confidence = data[i];
- oResult.push_back(result);
- }
- break;
- }
- default:
- std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl;
- }
- return RET_OK;
- }
- char* YOLO_V8::WarmUpSession() {
- clock_t starttime_1 = clock();
- cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
- cv::Mat processedImg;
- PreProcess(iImg, imgSize, processedImg);
- if (modelType < 4)
- {
- float* blob = new float[iImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) };
- Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
- YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
- outputNodeNames.size());
- delete[] blob;
- clock_t starttime_4 = clock();
- double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable)
- {
- std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
- }
- }
- else
- {
- #ifdef USE_CUDA
- half* blob = new half[iImg.total() * 3];
- BlobFromImage(processedImg, blob);
- std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
- Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
- delete[] blob;
- clock_t starttime_4 = clock();
- double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
- if (cudaEnable)
- {
- std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
- }
- #endif
- }
- return RET_OK;
- }
|