123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import numpy as np
- import scipy
- from scipy.spatial.distance import cdist
- from ultralytics.utils.metrics import batch_probiou, bbox_ioa
- try:
- import lap # for linear_assignment
- assert lap.__version__ # verify package is not directory
- except (ImportError, AssertionError, AttributeError):
- from ultralytics.utils.checks import check_requirements
- check_requirements("lap>=0.5.12") # https://github.com/gatagat/lap
- import lap
- def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
- """
- Perform linear assignment using either the scipy or lap.lapjv method.
- Args:
- cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
- thresh (float): Threshold for considering an assignment valid.
- use_lap (bool): Use lap.lapjv for the assignment. If False, scipy.optimize.linear_sum_assignment is used.
- Returns:
- matched_indices (np.ndarray): Array of matched indices of shape (K, 2), where K is the number of matches.
- unmatched_a (np.ndarray): Array of unmatched indices from the first set, with shape (L,).
- unmatched_b (np.ndarray): Array of unmatched indices from the second set, with shape (M,).
- Examples:
- >>> cost_matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- >>> thresh = 5.0
- >>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
- """
- if cost_matrix.size == 0:
- return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
- if use_lap:
- # Use lap.lapjv
- # https://github.com/gatagat/lap
- _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
- matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
- unmatched_a = np.where(x < 0)[0]
- unmatched_b = np.where(y < 0)[0]
- else:
- # Use scipy.optimize.linear_sum_assignment
- # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
- x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
- matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
- if len(matches) == 0:
- unmatched_a = list(np.arange(cost_matrix.shape[0]))
- unmatched_b = list(np.arange(cost_matrix.shape[1]))
- else:
- unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
- unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))
- return matches, unmatched_a, unmatched_b
- def iou_distance(atracks: list, btracks: list) -> np.ndarray:
- """
- Compute cost based on Intersection over Union (IoU) between tracks.
- Args:
- atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
- btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
- Returns:
- (np.ndarray): Cost matrix computed based on IoU.
- Examples:
- Compute IoU distance between two sets of tracks
- >>> atracks = [np.array([0, 0, 10, 10]), np.array([20, 20, 30, 30])]
- >>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
- >>> cost_matrix = iou_distance(atracks, btracks)
- """
- if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
- atlbrs = atracks
- btlbrs = btracks
- else:
- atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
- btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]
- ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
- if len(atlbrs) and len(btlbrs):
- if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
- ious = batch_probiou(
- np.ascontiguousarray(atlbrs, dtype=np.float32),
- np.ascontiguousarray(btlbrs, dtype=np.float32),
- ).numpy()
- else:
- ious = bbox_ioa(
- np.ascontiguousarray(atlbrs, dtype=np.float32),
- np.ascontiguousarray(btlbrs, dtype=np.float32),
- iou=True,
- )
- return 1 - ious # cost matrix
- def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
- """
- Compute distance between tracks and detections based on embeddings.
- Args:
- tracks (list[STrack]): List of tracks, where each track contains embedding features.
- detections (list[BaseTrack]): List of detections, where each detection contains embedding features.
- metric (str): Metric for distance computation. Supported metrics include 'cosine', 'euclidean', etc.
- Returns:
- (np.ndarray): Cost matrix computed based on embeddings with shape (N, M), where N is the number of tracks
- and M is the number of detections.
- Examples:
- Compute the embedding distance between tracks and detections using cosine metric
- >>> tracks = [STrack(...), STrack(...)] # List of track objects with embedding features
- >>> detections = [BaseTrack(...), BaseTrack(...)] # List of detection objects with embedding features
- >>> cost_matrix = embedding_distance(tracks, detections, metric="cosine")
- """
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
- # for i, track in enumerate(tracks):
- # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
- return cost_matrix
- def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
- """
- Fuses cost matrix with detection scores to produce a single similarity matrix.
- Args:
- cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
- detections (list[BaseTrack]): List of detections, each containing a score attribute.
- Returns:
- (np.ndarray): Fused similarity matrix with shape (N, M).
- Examples:
- Fuse a cost matrix with detection scores
- >>> cost_matrix = np.random.rand(5, 10) # 5 tracks and 10 detections
- >>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
- >>> fused_matrix = fuse_score(cost_matrix, detections)
- """
- if cost_matrix.size == 0:
- return cost_matrix
- iou_sim = 1 - cost_matrix
- det_scores = np.array([det.score for det in detections])
- det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
- fuse_sim = iou_sim * det_scores
- return 1 - fuse_sim # fuse_cost
|