123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset
- from ultralytics.data.utils import check_det_dataset
- from ultralytics.models.yolo.world import WorldTrainer
- from ultralytics.utils import DEFAULT_CFG
- from ultralytics.utils.torch_utils import de_parallel
- class WorldTrainerFromScratch(WorldTrainer):
- """
- A class extending the WorldTrainer class for training a world model from scratch on open-set dataset.
- Example:
- ```python
- from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
- from ultralytics import YOLOWorld
- data = dict(
- train=dict(
- yolo_data=["Objects365.yaml"],
- grounding_data=[
- dict(
- img_path="../datasets/flickr30k/images",
- json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
- ),
- dict(
- img_path="../datasets/GQA/images",
- json_file="../datasets/GQA/final_mixed_train_no_coco.json",
- ),
- ],
- ),
- val=dict(yolo_data=["lvis.yaml"]),
- )
- model = YOLOWorld("yolov8s-worldv2.yaml")
- model.train(data=data, trainer=WorldTrainerFromScratch)
- ```
- """
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
- """Initialize a WorldTrainer object with given arguments."""
- if overrides is None:
- overrides = {}
- super().__init__(cfg, overrides, _callbacks)
- def build_dataset(self, img_path, mode="train", batch=None):
- """
- Build YOLO Dataset.
- Args:
- img_path (List[str] | str): Path to the folder containing images.
- mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
- batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
- """
- gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
- if mode != "train":
- return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
- dataset = [
- build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
- if isinstance(im_path, str)
- else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
- for im_path in img_path
- ]
- return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
- def get_dataset(self):
- """
- Get train, val path from data dict if it exists.
- Returns None if data format is not recognized.
- """
- final_data = {}
- data_yaml = self.args.data
- assert data_yaml.get("train", False), "train dataset not found" # object365.yaml
- assert data_yaml.get("val", False), "validation dataset not found" # lvis.yaml
- data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
- assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
- val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
- for d in data["val"]:
- if d.get("minival") is None: # for lvis dataset
- continue
- d["minival"] = str(d["path"] / d["minival"])
- for s in ["train", "val"]:
- final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
- # save grounding data if there's one
- grounding_data = data_yaml[s].get("grounding_data")
- if grounding_data is None:
- continue
- grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
- for g in grounding_data:
- assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
- final_data[s] += grounding_data
- # NOTE: to make training work properly, set `nc` and `names`
- final_data["nc"] = data["val"][0]["nc"]
- final_data["names"] = data["val"][0]["names"]
- self.data = final_data
- return final_data["train"], final_data["val"][0]
- def plot_training_labels(self):
- """DO NOT plot labels."""
- pass
- def final_eval(self):
- """Performs final evaluation and validation for object detection YOLO-World model."""
- val = self.args.data["val"]["yolo_data"][0]
- self.validator.args.data = val
- self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
- return super().final_eval()
|