123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import math
- from typing import Tuple, Type
- import torch
- from torch import Tensor, nn
- from ultralytics.nn.modules import MLPBlock
- class TwoWayTransformer(nn.Module):
- """
- A Two-Way Transformer module for simultaneous attention to image and query points.
- This class implements a specialized transformer decoder that attends to an input image using queries with
- supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point
- cloud processing.
- Attributes:
- depth (int): Number of layers in the transformer.
- embedding_dim (int): Channel dimension for input embeddings.
- num_heads (int): Number of heads for multihead attention.
- mlp_dim (int): Internal channel dimension for the MLP block.
- layers (nn.ModuleList): List of TwoWayAttentionBlock layers composing the transformer.
- final_attn_token_to_image (Attention): Final attention layer from queries to image.
- norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
- Methods:
- forward: Processes image and point embeddings through the transformer.
- Examples:
- >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
- >>> image_embedding = torch.randn(1, 256, 32, 32)
- >>> image_pe = torch.randn(1, 256, 32, 32)
- >>> point_embedding = torch.randn(1, 100, 256)
- >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
- >>> print(output_queries.shape, output_image.shape)
- """
- def __init__(
- self,
- depth: int,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- ) -> None:
- """
- Initialize a Two-Way Transformer for simultaneous attention to image and query points.
- Args:
- depth (int): Number of layers in the transformer.
- embedding_dim (int): Channel dimension for input embeddings.
- num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
- mlp_dim (int): Internal channel dimension for the MLP block.
- activation (Type[nn.Module]): Activation function to use in the MLP block.
- attention_downsample_rate (int): Downsampling rate for attention mechanism.
- Attributes:
- depth (int): Number of layers in the transformer.
- embedding_dim (int): Channel dimension for input embeddings.
- num_heads (int): Number of heads for multihead attention.
- mlp_dim (int): Internal channel dimension for the MLP block.
- layers (nn.ModuleList): List of TwoWayAttentionBlock layers.
- final_attn_token_to_image (Attention): Final attention layer from queries to image.
- norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
- Examples:
- >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
- >>> image_embedding = torch.randn(1, 256, 32, 32)
- >>> image_pe = torch.randn(1, 256, 32, 32)
- >>> point_embedding = torch.randn(1, 100, 256)
- >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
- >>> print(output_queries.shape, output_image.shape)
- """
- super().__init__()
- self.depth = depth
- self.embedding_dim = embedding_dim
- self.num_heads = num_heads
- self.mlp_dim = mlp_dim
- self.layers = nn.ModuleList()
- for i in range(depth):
- self.layers.append(
- TwoWayAttentionBlock(
- embedding_dim=embedding_dim,
- num_heads=num_heads,
- mlp_dim=mlp_dim,
- activation=activation,
- attention_downsample_rate=attention_downsample_rate,
- skip_first_layer_pe=(i == 0),
- )
- )
- self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
- self.norm_final_attn = nn.LayerNorm(embedding_dim)
- def forward(
- self,
- image_embedding: Tensor,
- image_pe: Tensor,
- point_embedding: Tensor,
- ) -> Tuple[Tensor, Tensor]:
- """
- Processes image and point embeddings through the Two-Way Transformer.
- Args:
- image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W).
- image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding.
- point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim).
- Returns:
- (Tuple[torch.Tensor, torch.Tensor]): Processed point_embedding and image_embedding.
- Examples:
- >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
- >>> image_embedding = torch.randn(1, 256, 32, 32)
- >>> image_pe = torch.randn(1, 256, 32, 32)
- >>> point_embedding = torch.randn(1, 100, 256)
- >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
- >>> print(output_queries.shape, output_image.shape)
- """
- # BxCxHxW -> BxHWxC == B x N_image_tokens x C
- image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
- image_pe = image_pe.flatten(2).permute(0, 2, 1)
- # Prepare queries
- queries = point_embedding
- keys = image_embedding
- # Apply transformer blocks and final layernorm
- for layer in self.layers:
- queries, keys = layer(
- queries=queries,
- keys=keys,
- query_pe=point_embedding,
- key_pe=image_pe,
- )
- # Apply the final attention layer from the points to the image
- q = queries + point_embedding
- k = keys + image_pe
- attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm_final_attn(queries)
- return queries, keys
- class TwoWayAttentionBlock(nn.Module):
- """
- A two-way attention block for simultaneous attention to image and query points.
- This class implements a specialized transformer block with four main layers: self-attention on sparse inputs,
- cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense
- inputs to sparse inputs.
- Attributes:
- self_attn (Attention): Self-attention layer for queries.
- norm1 (nn.LayerNorm): Layer normalization after self-attention.
- cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
- norm2 (nn.LayerNorm): Layer normalization after token-to-image attention.
- mlp (MLPBlock): MLP block for transforming query embeddings.
- norm3 (nn.LayerNorm): Layer normalization after MLP block.
- norm4 (nn.LayerNorm): Layer normalization after image-to-token attention.
- cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
- skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.
- Methods:
- forward: Applies self-attention and cross-attention to queries and keys.
- Examples:
- >>> embedding_dim, num_heads = 256, 8
- >>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
- >>> queries = torch.randn(1, 100, embedding_dim)
- >>> keys = torch.randn(1, 1000, embedding_dim)
- >>> query_pe = torch.randn(1, 100, embedding_dim)
- >>> key_pe = torch.randn(1, 1000, embedding_dim)
- >>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
- """
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int = 2048,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- skip_first_layer_pe: bool = False,
- ) -> None:
- """
- Initializes a TwoWayAttentionBlock for simultaneous attention to image and query points.
- This block implements a specialized transformer layer with four main components: self-attention on sparse
- inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention
- of dense inputs to sparse inputs.
- Args:
- embedding_dim (int): Channel dimension of the embeddings.
- num_heads (int): Number of attention heads in the attention layers.
- mlp_dim (int): Hidden dimension of the MLP block.
- activation (Type[nn.Module]): Activation function for the MLP block.
- attention_downsample_rate (int): Downsampling rate for the attention mechanism.
- skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.
- Examples:
- >>> embedding_dim, num_heads = 256, 8
- >>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
- >>> queries = torch.randn(1, 100, embedding_dim)
- >>> keys = torch.randn(1, 1000, embedding_dim)
- >>> query_pe = torch.randn(1, 100, embedding_dim)
- >>> key_pe = torch.randn(1, 1000, embedding_dim)
- >>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
- """
- super().__init__()
- self.self_attn = Attention(embedding_dim, num_heads)
- self.norm1 = nn.LayerNorm(embedding_dim)
- self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
- self.norm2 = nn.LayerNorm(embedding_dim)
- self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
- self.norm3 = nn.LayerNorm(embedding_dim)
- self.norm4 = nn.LayerNorm(embedding_dim)
- self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
- self.skip_first_layer_pe = skip_first_layer_pe
- def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
- """Applies two-way attention to process query and key embeddings in a transformer block."""
- # Self attention block
- if self.skip_first_layer_pe:
- queries = self.self_attn(q=queries, k=queries, v=queries)
- else:
- q = queries + query_pe
- attn_out = self.self_attn(q=q, k=q, v=queries)
- queries = queries + attn_out
- queries = self.norm1(queries)
- # Cross attention block, tokens attending to image embedding
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm2(queries)
- # MLP block
- mlp_out = self.mlp(queries)
- queries = queries + mlp_out
- queries = self.norm3(queries)
- # Cross attention block, image embedding attending to tokens
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
- keys = keys + attn_out
- keys = self.norm4(keys)
- return queries, keys
- class Attention(nn.Module):
- """
- An attention layer with downscaling capability for embedding size after projection.
- This class implements a multi-head attention mechanism with the option to downsample the internal
- dimension of queries, keys, and values.
- Attributes:
- embedding_dim (int): Dimensionality of input embeddings.
- kv_in_dim (int): Dimensionality of key and value inputs.
- internal_dim (int): Internal dimension after downsampling.
- num_heads (int): Number of attention heads.
- q_proj (nn.Linear): Linear projection for queries.
- k_proj (nn.Linear): Linear projection for keys.
- v_proj (nn.Linear): Linear projection for values.
- out_proj (nn.Linear): Linear projection for output.
- Methods:
- _separate_heads: Separates input tensor into attention heads.
- _recombine_heads: Recombines separated attention heads.
- forward: Computes attention output for given query, key, and value tensors.
- Examples:
- >>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
- >>> q = torch.randn(1, 100, 256)
- >>> k = v = torch.randn(1, 50, 256)
- >>> output = attn(q, k, v)
- >>> print(output.shape)
- torch.Size([1, 100, 256])
- """
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- downsample_rate: int = 1,
- kv_in_dim: int = None,
- ) -> None:
- """
- Initializes the Attention module with specified dimensions and settings.
- This class implements a multi-head attention mechanism with optional downsampling of the internal
- dimension for queries, keys, and values.
- Args:
- embedding_dim (int): Dimensionality of input embeddings.
- num_heads (int): Number of attention heads.
- downsample_rate (int): Factor by which internal dimensions are downsampled. Defaults to 1.
- kv_in_dim (int | None): Dimensionality of key and value inputs. If None, uses embedding_dim.
- Raises:
- AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate).
- Examples:
- >>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
- >>> q = torch.randn(1, 100, 256)
- >>> k = v = torch.randn(1, 50, 256)
- >>> output = attn(q, k, v)
- >>> print(output.shape)
- torch.Size([1, 100, 256])
- """
- super().__init__()
- self.embedding_dim = embedding_dim
- self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
- self.internal_dim = embedding_dim // downsample_rate
- self.num_heads = num_heads
- assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
- self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
- self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
- self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
- self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
- @staticmethod
- def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
- """Separates the input tensor into the specified number of attention heads."""
- b, n, c = x.shape
- x = x.reshape(b, n, num_heads, c // num_heads)
- return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
- @staticmethod
- def _recombine_heads(x: Tensor) -> Tensor:
- """Recombines separated attention heads into a single tensor."""
- b, n_heads, n_tokens, c_per_head = x.shape
- x = x.transpose(1, 2)
- return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
- """Applies multi-head attention to query, key, and value tensors with optional downsampling."""
- # Input projections
- q = self.q_proj(q)
- k = self.k_proj(k)
- v = self.v_proj(v)
- # Separate into heads
- q = self._separate_heads(q, self.num_heads)
- k = self._separate_heads(k, self.num_heads)
- v = self._separate_heads(v, self.num_heads)
- # Attention
- _, _, _, c_per_head = q.shape
- attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
- attn = attn / math.sqrt(c_per_head)
- attn = torch.softmax(attn, dim=-1)
- # Get output
- out = attn @ v
- out = self._recombine_heads(out)
- return self.out_proj(out)
|