123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import copy
- from typing import Optional
- import torch
- from torch import Tensor, nn
- from .blocks import RoPEAttention
- class MemoryAttentionLayer(nn.Module):
- """
- Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks.
- This class combines self-attention, cross-attention, and feedforward components to process input tensors and
- generate memory-based attention outputs.
- Attributes:
- d_model (int): Dimensionality of the model.
- dim_feedforward (int): Dimensionality of the feedforward network.
- dropout_value (float): Dropout rate for regularization.
- self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding).
- cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing.
- linear1 (nn.Linear): First linear layer of the feedforward network.
- linear2 (nn.Linear): Second linear layer of the feedforward network.
- norm1 (nn.LayerNorm): Layer normalization for self-attention output.
- norm2 (nn.LayerNorm): Layer normalization for cross-attention output.
- norm3 (nn.LayerNorm): Layer normalization for feedforward network output.
- dropout1 (nn.Dropout): Dropout layer after self-attention.
- dropout2 (nn.Dropout): Dropout layer after cross-attention.
- dropout3 (nn.Dropout): Dropout layer after feedforward network.
- activation (nn.ReLU): Activation function for the feedforward network.
- pos_enc_at_attn (bool): Flag to add positional encoding at attention.
- pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries.
- pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys.
- Methods:
- forward: Performs the full memory attention operation on input tensors.
- _forward_sa: Performs self-attention on input tensor.
- _forward_ca: Performs cross-attention between target and memory tensors.
- Examples:
- >>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1)
- >>> tgt = torch.randn(1, 100, 256)
- >>> memory = torch.randn(1, 100, 64)
- >>> pos = torch.randn(1, 100, 256)
- >>> query_pos = torch.randn(1, 100, 256)
- >>> output = layer(tgt, memory, pos, query_pos)
- >>> print(output.shape)
- torch.Size([1, 100, 256])
- """
- def __init__(
- self,
- d_model: int = 256,
- dim_feedforward: int = 2048,
- dropout: float = 0.1,
- pos_enc_at_attn: bool = False,
- pos_enc_at_cross_attn_keys: bool = True,
- pos_enc_at_cross_attn_queries: bool = False,
- ):
- """Initializes a memory attention layer with self-attention, cross-attention, and feedforward components."""
- super().__init__()
- self.d_model = d_model
- self.dim_feedforward = dim_feedforward
- self.dropout_value = dropout
- self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1)
- self.cross_attn_image = RoPEAttention(
- rope_k_repeat=True,
- embedding_dim=256,
- num_heads=1,
- downsample_rate=1,
- kv_in_dim=64,
- )
- # Implementation of Feedforward model
- self.linear1 = nn.Linear(d_model, dim_feedforward)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_feedforward, d_model)
- self.norm1 = nn.LayerNorm(d_model)
- self.norm2 = nn.LayerNorm(d_model)
- self.norm3 = nn.LayerNorm(d_model)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
- self.dropout3 = nn.Dropout(dropout)
- self.activation = nn.ReLU()
- # Where to add pos enc
- self.pos_enc_at_attn = pos_enc_at_attn
- self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
- self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
- def _forward_sa(self, tgt, query_pos):
- """Performs self-attention on input tensor using positional encoding and RoPE attention mechanism."""
- tgt2 = self.norm1(tgt)
- q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
- tgt2 = self.self_attn(q, k, v=tgt2)
- tgt = tgt + self.dropout1(tgt2)
- return tgt
- def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
- """Performs cross-attention between target and memory tensors using RoPEAttention mechanism."""
- kwds = {}
- if num_k_exclude_rope > 0:
- assert isinstance(self.cross_attn_image, RoPEAttention)
- kwds = {"num_k_exclude_rope": num_k_exclude_rope}
- # Cross-Attention
- tgt2 = self.norm2(tgt)
- tgt2 = self.cross_attn_image(
- q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
- k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
- v=memory,
- **kwds,
- )
- tgt = tgt + self.dropout2(tgt2)
- return tgt
- def forward(
- self,
- tgt,
- memory,
- pos: Optional[Tensor] = None,
- query_pos: Optional[Tensor] = None,
- num_k_exclude_rope: int = 0,
- ) -> torch.Tensor:
- """Processes input tensors using self-attention, cross-attention, and MLP for memory-based attention."""
- tgt = self._forward_sa(tgt, query_pos)
- tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
- # MLP
- tgt2 = self.norm3(tgt)
- tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
- tgt = tgt + self.dropout3(tgt2)
- return tgt
- class MemoryAttention(nn.Module):
- """
- Memory attention module for processing sequential data with self and cross-attention mechanisms.
- This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
- for processing sequential data, particularly useful in transformer-like architectures.
- Attributes:
- d_model (int): The dimension of the model's hidden state.
- layers (nn.ModuleList): A list of MemoryAttentionLayer modules.
- num_layers (int): The number of attention layers.
- norm (nn.LayerNorm): Layer normalization applied to the output.
- pos_enc_at_input (bool): Whether to apply positional encoding at the input.
- batch_first (bool): Whether the input tensors are in batch-first format.
- Methods:
- forward: Processes input tensors through the attention layers.
- Examples:
- >>> d_model = 256
- >>> layer = MemoryAttentionLayer(d_model)
- >>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
- >>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
- >>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
- >>> curr_pos = torch.randn(10, 32, d_model)
- >>> memory_pos = torch.randn(20, 32, d_model)
- >>> output = attention(curr, memory, curr_pos, memory_pos)
- >>> print(output.shape)
- torch.Size([10, 32, 256])
- """
- def __init__(
- self,
- d_model: int,
- pos_enc_at_input: bool,
- layer: nn.Module,
- num_layers: int,
- batch_first: bool = True, # Do layers expect batch first input?
- ):
- """Initializes MemoryAttention module with layers and normalization for attention processing."""
- super().__init__()
- self.d_model = d_model
- self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
- self.num_layers = num_layers
- self.norm = nn.LayerNorm(d_model)
- self.pos_enc_at_input = pos_enc_at_input
- self.batch_first = batch_first
- def forward(
- self,
- curr: torch.Tensor, # self-attention inputs
- memory: torch.Tensor, # cross-attention inputs
- curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
- memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
- num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
- ):
- """Processes input tensors through multiple attention layers, applying self and cross-attention mechanisms."""
- if isinstance(curr, list):
- assert isinstance(curr_pos, list)
- assert len(curr) == len(curr_pos) == 1
- curr, curr_pos = (
- curr[0],
- curr_pos[0],
- )
- assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory"
- output = curr
- if self.pos_enc_at_input and curr_pos is not None:
- output = output + 0.1 * curr_pos
- if self.batch_first:
- # Convert to batch first
- output = output.transpose(0, 1)
- curr_pos = curr_pos.transpose(0, 1)
- memory = memory.transpose(0, 1)
- memory_pos = memory_pos.transpose(0, 1)
- for layer in self.layers:
- kwds = {}
- if isinstance(layer.cross_attn_image, RoPEAttention):
- kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
- output = layer(
- tgt=output,
- memory=memory,
- pos=memory_pos,
- query_pos=curr_pos,
- **kwds,
- )
- normed_output = self.norm(output)
- if self.batch_first:
- # Convert back to seq first
- normed_output = normed_output.transpose(0, 1)
- curr_pos = curr_pos.transpose(0, 1)
- return normed_output
|