default.yaml 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
  3. # For documentation see https://docs.ultralytics.com/usage/cfg/
  4. task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
  5. mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
  6. # Train settings -------------------------------------------------------------------------------------------------------
  7. model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
  8. data: # (str, optional) path to data file, i.e. coco8.yaml
  9. epochs: 100 # (int) number of epochs to train for
  10. time: # (float, optional) number of hours to train for, overrides epochs if supplied
  11. patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
  12. batch: 16 # (int) number of images per batch (-1 for AutoBatch)
  13. imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
  14. save: True # (bool) save train checkpoints and predict results
  15. save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
  16. cache: False # (bool) True/ram, disk or False. Use cache for data loading
  17. device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
  18. workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
  19. project: # (str, optional) project name
  20. name: # (str, optional) experiment name, results saved to 'project/name' directory
  21. exist_ok: False # (bool) whether to overwrite existing experiment
  22. pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
  23. optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
  24. verbose: True # (bool) whether to print verbose output
  25. seed: 0 # (int) random seed for reproducibility
  26. deterministic: True # (bool) whether to enable deterministic mode
  27. single_cls: False # (bool) train multi-class data as single-class
  28. rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
  29. cos_lr: False # (bool) use cosine learning rate scheduler
  30. close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
  31. resume: False # (bool) resume training from last checkpoint
  32. amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
  33. fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
  34. profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
  35. freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
  36. multi_scale: False # (bool) Whether to use multiscale during training
  37. # Segmentation
  38. overlap_mask: True # (bool) merge object masks into a single image mask during training (segment train only)
  39. mask_ratio: 4 # (int) mask downsample ratio (segment train only)
  40. # Classification
  41. dropout: 0.0 # (float) use dropout regularization (classify train only)
  42. # Val/Test settings ----------------------------------------------------------------------------------------------------
  43. val: True # (bool) validate/test during training
  44. split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
  45. save_json: False # (bool) save results to JSON file
  46. save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
  47. conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
  48. iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
  49. max_det: 300 # (int) maximum number of detections per image
  50. half: False # (bool) use half precision (FP16)
  51. dnn: False # (bool) use OpenCV DNN for ONNX inference
  52. plots: True # (bool) save plots and images during train/val
  53. # Predict settings -----------------------------------------------------------------------------------------------------
  54. source: # (str, optional) source directory for images or videos
  55. vid_stride: 1 # (int) video frame-rate stride
  56. stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
  57. visualize: False # (bool) visualize model features
  58. augment: False # (bool) apply image augmentation to prediction sources
  59. agnostic_nms: False # (bool) class-agnostic NMS
  60. classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
  61. retina_masks: False # (bool) use high-resolution segmentation masks
  62. embed: # (list[int], optional) return feature vectors/embeddings from given layers
  63. # Visualize settings ---------------------------------------------------------------------------------------------------
  64. show: False # (bool) show predicted images and videos if environment allows
  65. save_frames: False # (bool) save predicted individual video frames
  66. save_txt: False # (bool) save results as .txt file
  67. save_conf: False # (bool) save results with confidence scores
  68. save_crop: False # (bool) save cropped images with results
  69. show_labels: True # (bool) show prediction labels, i.e. 'person'
  70. show_conf: True # (bool) show prediction confidence, i.e. '0.99'
  71. show_boxes: True # (bool) show prediction boxes
  72. line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
  73. # Export settings ------------------------------------------------------------------------------------------------------
  74. format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
  75. keras: False # (bool) use Kera=s
  76. optimize: False # (bool) TorchScript: optimize for mobile
  77. int8: False # (bool) CoreML/TF INT8 quantization
  78. dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
  79. simplify: True # (bool) ONNX: simplify model using `onnxslim`
  80. opset: # (int, optional) ONNX: opset version
  81. workspace: None # (float, optional) TensorRT: workspace size (GiB), `None` will let TensorRT auto-allocate memory
  82. nms: False # (bool) CoreML: add NMS
  83. # Hyperparameters ------------------------------------------------------------------------------------------------------
  84. lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
  85. lrf: 0.01 # (float) final learning rate (lr0 * lrf)
  86. momentum: 0.937 # (float) SGD momentum/Adam beta1
  87. weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
  88. warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
  89. warmup_momentum: 0.8 # (float) warmup initial momentum
  90. warmup_bias_lr: 0.0 # 0.1 # (float) warmup initial bias lr
  91. box: 7.5 # (float) box loss gain
  92. cls: 0.5 # (float) cls loss gain (scale with pixels)
  93. dfl: 1.5 # (float) dfl loss gain
  94. pose: 12.0 # (float) pose loss gain
  95. kobj: 1.0 # (float) keypoint obj loss gain
  96. nbs: 64 # (int) nominal batch size
  97. hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
  98. hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
  99. hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
  100. degrees: 0.0 # (float) image rotation (+/- deg)
  101. translate: 0.1 # (float) image translation (+/- fraction)
  102. scale: 0.5 # (float) image scale (+/- gain)
  103. shear: 0.0 # (float) image shear (+/- deg)
  104. perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
  105. flipud: 0.0 # (float) image flip up-down (probability)
  106. fliplr: 0.5 # (float) image flip left-right (probability)
  107. bgr: 0.0 # (float) image channel BGR (probability)
  108. mosaic: 1.0 # (float) image mosaic (probability)
  109. mixup: 0.0 # (float) image mixup (probability)
  110. copy_paste: 0.1 # (float) segment copy-paste (probability)
  111. copy_paste_mode: "flip" # (str) the method to do copy_paste augmentation (flip, mixup)
  112. auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
  113. erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.
  114. crop_fraction: 1.0 # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.
  115. # Custom config.yaml ---------------------------------------------------------------------------------------------------
  116. cfg: # (str, optional) for overriding defaults.yaml
  117. # Tracker settings ------------------------------------------------------------------------------------------------------
  118. tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]