12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """Block modules."""
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import math
- from ultralytics.utils.torch_utils import fuse_conv_and_bn
- from .conv import Conv, DSConv, DWConv, GhostConv, LightConv, RepConv, autopad
- from .transformer import TransformerBlock
- __all__ = (
- "DFL",
- "HGBlock",
- "HGStem",
- "SPP",
- "SPPF",
- "C1",
- "C2",
- "C3",
- "C2f",
- "C2fAttn",
- "ImagePoolingAttn",
- "ContrastiveHead",
- "BNContrastiveHead",
- "C3x",
- "C3TR",
- "C3Ghost",
- "GhostBottleneck",
- "Bottleneck",
- "BottleneckCSP",
- "Proto",
- "RepC3",
- "ResNetLayer",
- "RepNCSPELAN4",
- "ELAN1",
- "ADown",
- "AConv",
- "SPPELAN",
- "CBFuse",
- "CBLinear",
- "C3k2",
- "C2fPSA",
- "C2PSA",
- "RepVGGDW",
- "CIB",
- "C2fCIB",
- "Attention",
- "PSA",
- "SCDown",
- "TorchVision",
- "HyperACE",
- "DownsampleConv",
- "FullPAD_Tunnel",
- "DSC3k2"
- )
- class DFL(nn.Module):
- """
- Integral module of Distribution Focal Loss (DFL).
- Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
- """
- def __init__(self, c1=16):
- """Initialize a convolutional layer with a given number of input channels."""
- super().__init__()
- self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
- x = torch.arange(c1, dtype=torch.float)
- self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
- self.c1 = c1
- def forward(self, x):
- """Applies a transformer layer on input tensor 'x' and returns a tensor."""
- b, _, a = x.shape # batch, channels, anchors
- return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
- # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
- class Proto(nn.Module):
- """YOLOv8 mask Proto module for segmentation models."""
- def __init__(self, c1, c_=256, c2=32):
- """
- Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
- Input arguments are ch_in, number of protos, number of masks.
- """
- super().__init__()
- self.cv1 = Conv(c1, c_, k=3)
- self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
- self.cv2 = Conv(c_, c_, k=3)
- self.cv3 = Conv(c_, c2)
- def forward(self, x):
- """Performs a forward pass through layers using an upsampled input image."""
- return self.cv3(self.cv2(self.upsample(self.cv1(x))))
- class HGStem(nn.Module):
- """
- StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
- https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
- """
- def __init__(self, c1, cm, c2):
- """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
- super().__init__()
- self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
- self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
- self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
- self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
- self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
- self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
- def forward(self, x):
- """Forward pass of a PPHGNetV2 backbone layer."""
- x = self.stem1(x)
- x = F.pad(x, [0, 1, 0, 1])
- x2 = self.stem2a(x)
- x2 = F.pad(x2, [0, 1, 0, 1])
- x2 = self.stem2b(x2)
- x1 = self.pool(x)
- x = torch.cat([x1, x2], dim=1)
- x = self.stem3(x)
- x = self.stem4(x)
- return x
- class HGBlock(nn.Module):
- """
- HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
- https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
- """
- def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
- """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
- super().__init__()
- block = LightConv if lightconv else Conv
- self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
- self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
- self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Forward pass of a PPHGNetV2 backbone layer."""
- y = [x]
- y.extend(m(y[-1]) for m in self.m)
- y = self.ec(self.sc(torch.cat(y, 1)))
- return y + x if self.add else y
- class SPP(nn.Module):
- """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
- def __init__(self, c1, c2, k=(5, 9, 13)):
- """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
- def forward(self, x):
- """Forward pass of the SPP layer, performing spatial pyramid pooling."""
- x = self.cv1(x)
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
- class SPPF(nn.Module):
- """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
- def __init__(self, c1, c2, k=5):
- """
- Initializes the SPPF layer with given input/output channels and kernel size.
- This module is equivalent to SPP(k=(5, 9, 13)).
- """
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
- def forward(self, x):
- """Forward pass through Ghost Convolution block."""
- y = [self.cv1(x)]
- y.extend(self.m(y[-1]) for _ in range(3))
- return self.cv2(torch.cat(y, 1))
- class C1(nn.Module):
- """CSP Bottleneck with 1 convolution."""
- def __init__(self, c1, c2, n=1):
- """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
- super().__init__()
- self.cv1 = Conv(c1, c2, 1, 1)
- self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
- def forward(self, x):
- """Applies cross-convolutions to input in the C3 module."""
- y = self.cv1(x)
- return self.m(y) + y
- class C2(nn.Module):
- """CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes a CSP Bottleneck with 2 convolutions and optional shortcut connection."""
- super().__init__()
- self.c = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
- # self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
- self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
- def forward(self, x):
- """Forward pass through the CSP bottleneck with 2 convolutions."""
- a, b = self.cv1(x).chunk(2, 1)
- return self.cv2(torch.cat((self.m(a), b), 1))
- class C2f(nn.Module):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
- """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
- super().__init__()
- self.c = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
- self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
- def forward(self, x):
- """Forward pass through C2f layer."""
- y = list(self.cv1(x).chunk(2, 1))
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- def forward_split(self, x):
- """Forward pass using split() instead of chunk()."""
- y = self.cv1(x).split((self.c, self.c), 1)
- y = [y[0], y[1]]
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- class C3(nn.Module):
- """CSP Bottleneck with 3 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
- def forward(self, x):
- """Forward pass through the CSP bottleneck with 2 convolutions."""
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class C3x(C3):
- """C3 module with cross-convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize C3TR instance and set default parameters."""
- super().__init__(c1, c2, n, shortcut, g, e)
- self.c_ = int(c2 * e)
- self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
- class RepC3(nn.Module):
- """Rep C3."""
- def __init__(self, c1, c2, n=3, e=1.0):
- """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
- self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
- def forward(self, x):
- """Forward pass of RT-DETR neck layer."""
- return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
- class C3TR(C3):
- """C3 module with TransformerBlock()."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize C3Ghost module with GhostBottleneck()."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = TransformerBlock(c_, c_, 4, n)
- class C3Ghost(C3):
- """C3 module with GhostBottleneck()."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
- class GhostBottleneck(nn.Module):
- """Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
- def __init__(self, c1, c2, k=3, s=1):
- """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
- super().__init__()
- c_ = c2 // 2
- self.conv = nn.Sequential(
- GhostConv(c1, c_, 1, 1), # pw
- DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
- GhostConv(c_, c2, 1, 1, act=False), # pw-linear
- )
- self.shortcut = (
- nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
- )
- def forward(self, x):
- """Applies skip connection and concatenation to input tensor."""
- return self.conv(x) + self.shortcut(x)
- class Bottleneck(nn.Module):
- """Standard bottleneck."""
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, k[0], 1)
- self.cv2 = Conv(c_, c2, k[1], 1, g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Applies the YOLO FPN to input data."""
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class BottleneckCSP(nn.Module):
- """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.SiLU()
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- def forward(self, x):
- """Applies a CSP bottleneck with 3 convolutions."""
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
- class ResNetBlock(nn.Module):
- """ResNet block with standard convolution layers."""
- def __init__(self, c1, c2, s=1, e=4):
- """Initialize convolution with given parameters."""
- super().__init__()
- c3 = e * c2
- self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
- self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
- self.cv3 = Conv(c2, c3, k=1, act=False)
- self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
- def forward(self, x):
- """Forward pass through the ResNet block."""
- return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
- class ResNetLayer(nn.Module):
- """ResNet layer with multiple ResNet blocks."""
- def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
- """Initializes the ResNetLayer given arguments."""
- super().__init__()
- self.is_first = is_first
- if self.is_first:
- self.layer = nn.Sequential(
- Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- )
- else:
- blocks = [ResNetBlock(c1, c2, s, e=e)]
- blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
- self.layer = nn.Sequential(*blocks)
- def forward(self, x):
- """Forward pass through the ResNet layer."""
- return self.layer(x)
- class MaxSigmoidAttnBlock(nn.Module):
- """Max Sigmoid attention block."""
- def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
- """Initializes MaxSigmoidAttnBlock with specified arguments."""
- super().__init__()
- self.nh = nh
- self.hc = c2 // nh
- self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
- self.gl = nn.Linear(gc, ec)
- self.bias = nn.Parameter(torch.zeros(nh))
- self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
- self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
- def forward(self, x, guide):
- """Forward process."""
- bs, _, h, w = x.shape
- guide = self.gl(guide)
- guide = guide.view(bs, -1, self.nh, self.hc)
- embed = self.ec(x) if self.ec is not None else x
- embed = embed.view(bs, self.nh, self.hc, h, w)
- aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
- aw = aw.max(dim=-1)[0]
- aw = aw / (self.hc**0.5)
- aw = aw + self.bias[None, :, None, None]
- aw = aw.sigmoid() * self.scale
- x = self.proj_conv(x)
- x = x.view(bs, self.nh, -1, h, w)
- x = x * aw.unsqueeze(2)
- return x.view(bs, -1, h, w)
- class C2fAttn(nn.Module):
- """C2f module with an additional attn module."""
- def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
- """Initializes C2f module with attention mechanism for enhanced feature extraction and processing."""
- super().__init__()
- self.c = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
- self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
- self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
- def forward(self, x, guide):
- """Forward pass through C2f layer."""
- y = list(self.cv1(x).chunk(2, 1))
- y.extend(m(y[-1]) for m in self.m)
- y.append(self.attn(y[-1], guide))
- return self.cv2(torch.cat(y, 1))
- def forward_split(self, x, guide):
- """Forward pass using split() instead of chunk()."""
- y = list(self.cv1(x).split((self.c, self.c), 1))
- y.extend(m(y[-1]) for m in self.m)
- y.append(self.attn(y[-1], guide))
- return self.cv2(torch.cat(y, 1))
- class ImagePoolingAttn(nn.Module):
- """ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
- def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
- """Initializes ImagePoolingAttn with specified arguments."""
- super().__init__()
- nf = len(ch)
- self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
- self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
- self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
- self.proj = nn.Linear(ec, ct)
- self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
- self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
- self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
- self.ec = ec
- self.nh = nh
- self.nf = nf
- self.hc = ec // nh
- self.k = k
- def forward(self, x, text):
- """Executes attention mechanism on input tensor x and guide tensor."""
- bs = x[0].shape[0]
- assert len(x) == self.nf
- num_patches = self.k**2
- x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
- x = torch.cat(x, dim=-1).transpose(1, 2)
- q = self.query(text)
- k = self.key(x)
- v = self.value(x)
- # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
- q = q.reshape(bs, -1, self.nh, self.hc)
- k = k.reshape(bs, -1, self.nh, self.hc)
- v = v.reshape(bs, -1, self.nh, self.hc)
- aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
- aw = aw / (self.hc**0.5)
- aw = F.softmax(aw, dim=-1)
- x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
- x = self.proj(x.reshape(bs, -1, self.ec))
- return x * self.scale + text
- class ContrastiveHead(nn.Module):
- """Implements contrastive learning head for region-text similarity in vision-language models."""
- def __init__(self):
- """Initializes ContrastiveHead with specified region-text similarity parameters."""
- super().__init__()
- # NOTE: use -10.0 to keep the init cls loss consistency with other losses
- self.bias = nn.Parameter(torch.tensor([-10.0]))
- self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
- def forward(self, x, w):
- """Forward function of contrastive learning."""
- x = F.normalize(x, dim=1, p=2)
- w = F.normalize(w, dim=-1, p=2)
- x = torch.einsum("bchw,bkc->bkhw", x, w)
- return x * self.logit_scale.exp() + self.bias
- class BNContrastiveHead(nn.Module):
- """
- Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
- Args:
- embed_dims (int): Embed dimensions of text and image features.
- """
- def __init__(self, embed_dims: int):
- """Initialize ContrastiveHead with region-text similarity parameters."""
- super().__init__()
- self.norm = nn.BatchNorm2d(embed_dims)
- # NOTE: use -10.0 to keep the init cls loss consistency with other losses
- self.bias = nn.Parameter(torch.tensor([-10.0]))
- # use -1.0 is more stable
- self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
- def forward(self, x, w):
- """Forward function of contrastive learning."""
- x = self.norm(x)
- w = F.normalize(w, dim=-1, p=2)
- x = torch.einsum("bchw,bkc->bkhw", x, w)
- return x * self.logit_scale.exp() + self.bias
- class RepBottleneck(Bottleneck):
- """Rep bottleneck."""
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- """Initializes a RepBottleneck module with customizable in/out channels, shortcuts, groups and expansion."""
- super().__init__(c1, c2, shortcut, g, k, e)
- c_ = int(c2 * e) # hidden channels
- self.cv1 = RepConv(c1, c_, k[0], 1)
- class RepCSP(C3):
- """Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- class RepNCSPELAN4(nn.Module):
- """CSP-ELAN."""
- def __init__(self, c1, c2, c3, c4, n=1):
- """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
- super().__init__()
- self.c = c3 // 2
- self.cv1 = Conv(c1, c3, 1, 1)
- self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
- self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
- self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
- def forward(self, x):
- """Forward pass through RepNCSPELAN4 layer."""
- y = list(self.cv1(x).chunk(2, 1))
- y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
- return self.cv4(torch.cat(y, 1))
- def forward_split(self, x):
- """Forward pass using split() instead of chunk()."""
- y = list(self.cv1(x).split((self.c, self.c), 1))
- y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
- return self.cv4(torch.cat(y, 1))
- class ELAN1(RepNCSPELAN4):
- """ELAN1 module with 4 convolutions."""
- def __init__(self, c1, c2, c3, c4):
- """Initializes ELAN1 layer with specified channel sizes."""
- super().__init__(c1, c2, c3, c4)
- self.c = c3 // 2
- self.cv1 = Conv(c1, c3, 1, 1)
- self.cv2 = Conv(c3 // 2, c4, 3, 1)
- self.cv3 = Conv(c4, c4, 3, 1)
- self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
- class AConv(nn.Module):
- """AConv."""
- def __init__(self, c1, c2):
- """Initializes AConv module with convolution layers."""
- super().__init__()
- self.cv1 = Conv(c1, c2, 3, 2, 1)
- def forward(self, x):
- """Forward pass through AConv layer."""
- x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
- return self.cv1(x)
- class ADown(nn.Module):
- """ADown."""
- def __init__(self, c1, c2):
- """Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
- super().__init__()
- self.c = c2 // 2
- self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
- self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
- def forward(self, x):
- """Forward pass through ADown layer."""
- x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
- x1, x2 = x.chunk(2, 1)
- x1 = self.cv1(x1)
- x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
- x2 = self.cv2(x2)
- return torch.cat((x1, x2), 1)
- class SPPELAN(nn.Module):
- """SPP-ELAN."""
- def __init__(self, c1, c2, c3, k=5):
- """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
- super().__init__()
- self.c = c3
- self.cv1 = Conv(c1, c3, 1, 1)
- self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
- self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
- self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
- self.cv5 = Conv(4 * c3, c2, 1, 1)
- def forward(self, x):
- """Forward pass through SPPELAN layer."""
- y = [self.cv1(x)]
- y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
- return self.cv5(torch.cat(y, 1))
- class CBLinear(nn.Module):
- """CBLinear."""
- def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
- """Initializes the CBLinear module, passing inputs unchanged."""
- super().__init__()
- self.c2s = c2s
- self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
- def forward(self, x):
- """Forward pass through CBLinear layer."""
- return self.conv(x).split(self.c2s, dim=1)
- class CBFuse(nn.Module):
- """CBFuse."""
- def __init__(self, idx):
- """Initializes CBFuse module with layer index for selective feature fusion."""
- super().__init__()
- self.idx = idx
- def forward(self, xs):
- """Forward pass through CBFuse layer."""
- target_size = xs[-1].shape[2:]
- res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
- return torch.sum(torch.stack(res + xs[-1:]), dim=0)
- class C3f(nn.Module):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
- """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
- expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
- def forward(self, x):
- """Forward pass through C2f layer."""
- y = [self.cv2(x), self.cv1(x)]
- y.extend(m(y[-1]) for m in self.m)
- return self.cv3(torch.cat(y, 1))
- class C3k2(C2f):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
- """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
- super().__init__(c1, c2, n, shortcut, g, e)
- self.m = nn.ModuleList(
- C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
- )
- class C3k(C3):
- """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
- """Initializes the C3k module with specified channels, number of layers, and configurations."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- class RepVGGDW(torch.nn.Module):
- """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""
- def __init__(self, ed) -> None:
- """Initializes RepVGGDW with depthwise separable convolutional layers for efficient processing."""
- super().__init__()
- self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
- self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
- self.dim = ed
- self.act = nn.SiLU()
- def forward(self, x):
- """
- Performs a forward pass of the RepVGGDW block.
- Args:
- x (torch.Tensor): Input tensor.
- Returns:
- (torch.Tensor): Output tensor after applying the depth wise separable convolution.
- """
- return self.act(self.conv(x) + self.conv1(x))
- def forward_fuse(self, x):
- """
- Performs a forward pass of the RepVGGDW block without fusing the convolutions.
- Args:
- x (torch.Tensor): Input tensor.
- Returns:
- (torch.Tensor): Output tensor after applying the depth wise separable convolution.
- """
- return self.act(self.conv(x))
- @torch.no_grad()
- def fuse(self):
- """
- Fuses the convolutional layers in the RepVGGDW block.
- This method fuses the convolutional layers and updates the weights and biases accordingly.
- """
- conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
- conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
- conv_w = conv.weight
- conv_b = conv.bias
- conv1_w = conv1.weight
- conv1_b = conv1.bias
- conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])
- final_conv_w = conv_w + conv1_w
- final_conv_b = conv_b + conv1_b
- conv.weight.data.copy_(final_conv_w)
- conv.bias.data.copy_(final_conv_b)
- self.conv = conv
- del self.conv1
- class CIB(nn.Module):
- """
- Conditional Identity Block (CIB) module.
- Args:
- c1 (int): Number of input channels.
- c2 (int): Number of output channels.
- shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
- e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
- lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
- """
- def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
- """Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = nn.Sequential(
- Conv(c1, c1, 3, g=c1),
- Conv(c1, 2 * c_, 1),
- RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
- Conv(2 * c_, c2, 1),
- Conv(c2, c2, 3, g=c2),
- )
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """
- Forward pass of the CIB module.
- Args:
- x (torch.Tensor): Input tensor.
- Returns:
- (torch.Tensor): Output tensor.
- """
- return x + self.cv1(x) if self.add else self.cv1(x)
- class C2fCIB(C2f):
- """
- C2fCIB class represents a convolutional block with C2f and CIB modules.
- Args:
- c1 (int): Number of input channels.
- c2 (int): Number of output channels.
- n (int, optional): Number of CIB modules to stack. Defaults to 1.
- shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
- lk (bool, optional): Whether to use local key connection. Defaults to False.
- g (int, optional): Number of groups for grouped convolution. Defaults to 1.
- e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
- """
- def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
- """Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
- super().__init__(c1, c2, n, shortcut, g, e)
- self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
- class Attention(nn.Module):
- """
- Attention module that performs self-attention on the input tensor.
- Args:
- dim (int): The input tensor dimension.
- num_heads (int): The number of attention heads.
- attn_ratio (float): The ratio of the attention key dimension to the head dimension.
- Attributes:
- num_heads (int): The number of attention heads.
- head_dim (int): The dimension of each attention head.
- key_dim (int): The dimension of the attention key.
- scale (float): The scaling factor for the attention scores.
- qkv (Conv): Convolutional layer for computing the query, key, and value.
- proj (Conv): Convolutional layer for projecting the attended values.
- pe (Conv): Convolutional layer for positional encoding.
- """
- def __init__(self, dim, num_heads=8, attn_ratio=0.5):
- """Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
- super().__init__()
- self.num_heads = num_heads
- self.head_dim = dim // num_heads
- self.key_dim = int(self.head_dim * attn_ratio)
- self.scale = self.key_dim**-0.5
- nh_kd = self.key_dim * num_heads
- h = dim + nh_kd * 2
- self.qkv = Conv(dim, h, 1, act=False)
- self.proj = Conv(dim, dim, 1, act=False)
- self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
- def forward(self, x):
- """
- Forward pass of the Attention module.
- Args:
- x (torch.Tensor): The input tensor.
- Returns:
- (torch.Tensor): The output tensor after self-attention.
- """
- B, C, H, W = x.shape
- N = H * W
- qkv = self.qkv(x)
- q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
- [self.key_dim, self.key_dim, self.head_dim], dim=2
- )
- attn = (q.transpose(-2, -1) @ k) * self.scale
- attn = attn.softmax(dim=-1)
- x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
- x = self.proj(x)
- return x
- class PSABlock(nn.Module):
- """
- PSABlock class implementing a Position-Sensitive Attention block for neural networks.
- This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
- with optional shortcut connections.
- Attributes:
- attn (Attention): Multi-head attention module.
- ffn (nn.Sequential): Feed-forward neural network module.
- add (bool): Flag indicating whether to add shortcut connections.
- Methods:
- forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
- Examples:
- Create a PSABlock and perform a forward pass
- >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
- >>> input_tensor = torch.randn(1, 128, 32, 32)
- >>> output_tensor = psablock(input_tensor)
- """
- def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
- """Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
- super().__init__()
- self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
- self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
- self.add = shortcut
- def forward(self, x):
- """Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
- x = x + self.attn(x) if self.add else self.attn(x)
- x = x + self.ffn(x) if self.add else self.ffn(x)
- return x
- class PSA(nn.Module):
- """
- PSA class for implementing Position-Sensitive Attention in neural networks.
- This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to
- input tensors, enhancing feature extraction and processing capabilities.
- Attributes:
- c (int): Number of hidden channels after applying the initial convolution.
- cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
- cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
- attn (Attention): Attention module for position-sensitive attention.
- ffn (nn.Sequential): Feed-forward network for further processing.
- Methods:
- forward: Applies position-sensitive attention and feed-forward network to the input tensor.
- Examples:
- Create a PSA module and apply it to an input tensor
- >>> psa = PSA(c1=128, c2=128, e=0.5)
- >>> input_tensor = torch.randn(1, 128, 64, 64)
- >>> output_tensor = psa.forward(input_tensor)
- """
- def __init__(self, c1, c2, e=0.5):
- """Initializes the PSA module with input/output channels and attention mechanism for feature extraction."""
- super().__init__()
- assert c1 == c2
- self.c = int(c1 * e)
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv(2 * self.c, c1, 1)
- self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
- self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))
- def forward(self, x):
- """Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor."""
- a, b = self.cv1(x).split((self.c, self.c), dim=1)
- b = b + self.attn(b)
- b = b + self.ffn(b)
- return self.cv2(torch.cat((a, b), 1))
- class C2PSA(nn.Module):
- """
- C2PSA module with attention mechanism for enhanced feature extraction and processing.
- This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
- capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
- Attributes:
- c (int): Number of hidden channels.
- cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
- cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
- m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
- Methods:
- forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
- Notes:
- This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
- Examples:
- >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
- >>> input_tensor = torch.randn(1, 256, 64, 64)
- >>> output_tensor = c2psa(input_tensor)
- """
- def __init__(self, c1, c2, n=1, e=0.5):
- """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
- super().__init__()
- assert c1 == c2
- self.c = int(c1 * e)
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv(2 * self.c, c1, 1)
- self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
- def forward(self, x):
- """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
- a, b = self.cv1(x).split((self.c, self.c), dim=1)
- b = self.m(b)
- return self.cv2(torch.cat((a, b), 1))
- class C2fPSA(C2f):
- """
- C2fPSA module with enhanced feature extraction using PSA blocks.
- This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.
- Attributes:
- c (int): Number of hidden channels.
- cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
- cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
- m (nn.ModuleList): List of PSA blocks for feature extraction.
- Methods:
- forward: Performs a forward pass through the C2fPSA module.
- forward_split: Performs a forward pass using split() instead of chunk().
- Examples:
- >>> import torch
- >>> from ultralytics.models.common import C2fPSA
- >>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
- >>> x = torch.randn(1, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
- """
- def __init__(self, c1, c2, n=1, e=0.5):
- """Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction."""
- assert c1 == c2
- super().__init__(c1, c2, n=n, e=e)
- self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))
- class SCDown(nn.Module):
- """
- SCDown module for downsampling with separable convolutions.
- This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in
- efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.
- Attributes:
- cv1 (Conv): Pointwise convolution layer that reduces the number of channels.
- cv2 (Conv): Depthwise convolution layer that performs spatial downsampling.
- Methods:
- forward: Applies the SCDown module to the input tensor.
- Examples:
- >>> import torch
- >>> from ultralytics import SCDown
- >>> model = SCDown(c1=64, c2=128, k=3, s=2)
- >>> x = torch.randn(1, 64, 128, 128)
- >>> y = model(x)
- >>> print(y.shape)
- torch.Size([1, 128, 64, 64])
- """
- def __init__(self, c1, c2, k, s):
- """Initializes the SCDown module with specified input/output channels, kernel size, and stride."""
- super().__init__()
- self.cv1 = Conv(c1, c2, 1, 1)
- self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
- def forward(self, x):
- """Applies convolution and downsampling to the input tensor in the SCDown module."""
- return self.cv2(self.cv1(x))
- class TorchVision(nn.Module):
- """
- TorchVision module to allow loading any torchvision model.
- This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.
- Attributes:
- m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped.
- Args:
- c1 (int): Input channels.
- c2 (): Output channels.
- model (str): Name of the torchvision model to load.
- weights (str, optional): Pre-trained weights to load. Default is "DEFAULT".
- unwrap (bool, optional): If True, unwraps the model to a sequential containing all but the last `truncate` layers. Default is True.
- truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2.
- split (bool, optional): Returns output from intermediate child modules as list. Default is False.
- """
- def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False):
- """Load the model and weights from torchvision."""
- import torchvision # scope for faster 'import ultralytics'
- super().__init__()
- if hasattr(torchvision.models, "get_model"):
- self.m = torchvision.models.get_model(model, weights=weights)
- else:
- self.m = torchvision.models.__dict__[model](pretrained=bool(weights))
- if unwrap:
- layers = list(self.m.children())[:-truncate]
- if isinstance(layers[0], nn.Sequential): # Second-level for some models like EfficientNet, Swin
- layers = [*list(layers[0].children()), *layers[1:]]
- self.m = nn.Sequential(*layers)
- self.split = split
- else:
- self.split = False
- self.m.head = self.m.heads = nn.Identity()
- def forward(self, x):
- """Forward pass through the model."""
- if self.split:
- y = [x]
- y.extend(m(y[-1]) for m in self.m)
- else:
- y = self.m(x)
- return y
- import logging
- logger = logging.getLogger(__name__)
- USE_FLASH_ATTN = False
- try:
- import torch
- if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8: # Ampere or newer
- from flash_attn.flash_attn_interface import flash_attn_func
- USE_FLASH_ATTN = True
- else:
- from torch.nn.functional import scaled_dot_product_attention as sdpa
- logger.warning("FlashAttention is not available on this device. Using scaled_dot_product_attention instead.")
- except Exception:
- from torch.nn.functional import scaled_dot_product_attention as sdpa
- logger.warning("FlashAttention is not available on this device. Using scaled_dot_product_attention instead.")
- class AAttn(nn.Module):
- """
- Area-attention module with the requirement of flash attention.
- Attributes:
- dim (int): Number of hidden channels;
- num_heads (int): Number of heads into which the attention mechanism is divided;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1.
- Methods:
- forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.
- Examples:
- >>> import torch
- >>> from ultralytics.nn.modules import AAttn
- >>> model = AAttn(dim=64, num_heads=2, area=4)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
-
- Notes:
- recommend that dim//num_heads be a multiple of 32 or 64.
- """
- def __init__(self, dim, num_heads, area=1):
- """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""
- super().__init__()
- self.area = area
- self.num_heads = num_heads
- self.head_dim = head_dim = dim // num_heads
- all_head_dim = head_dim * self.num_heads
- self.qk = Conv(dim, all_head_dim * 2, 1, act=False)
- self.v = Conv(dim, all_head_dim, 1, act=False)
- self.proj = Conv(all_head_dim, dim, 1, act=False)
- self.pe = Conv(all_head_dim, dim, 5, 1, 2, g=dim, act=False)
- def forward(self, x):
- """Processes the input tensor 'x' through the area-attention"""
- B, C, H, W = x.shape
- N = H * W
- qk = self.qk(x).flatten(2).transpose(1, 2)
- v = self.v(x)
- pp = self.pe(v)
- v = v.flatten(2).transpose(1, 2)
- if self.area > 1:
- qk = qk.reshape(B * self.area, N // self.area, C * 2)
- v = v.reshape(B * self.area, N // self.area, C)
- B, N, _ = qk.shape
- q, k = qk.split([C, C], dim=2)
- if x.is_cuda and USE_FLASH_ATTN:
- q = q.view(B, N, self.num_heads, self.head_dim)
- k = k.view(B, N, self.num_heads, self.head_dim)
- v = v.view(B, N, self.num_heads, self.head_dim)
- x = flash_attn_func(
- q.contiguous().half(),
- k.contiguous().half(),
- v.contiguous().half()
- ).to(q.dtype)
- else:
- q = q.transpose(1, 2).view(B, self.num_heads, self.head_dim, N)
- k = k.transpose(1, 2).view(B, self.num_heads, self.head_dim, N)
- v = v.transpose(1, 2).view(B, self.num_heads, self.head_dim, N)
- attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)
- max_attn = attn.max(dim=-1, keepdim=True).values
- exp_attn = torch.exp(attn - max_attn)
- attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)
- x = (v @ attn.transpose(-2, -1))
- x = x.permute(0, 3, 1, 2)
- if self.area > 1:
- x = x.reshape(B // self.area, N * self.area, C)
- B, N, _ = x.shape
- x = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
- return self.proj(x + pp)
-
- class ABlock(nn.Module):
- """
- ABlock class implementing a Area-Attention block with effective feature extraction.
- This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas
- and feed-forward neural network layers.
- Attributes:
- dim (int): Number of hidden channels;
- num_heads (int): Number of heads into which the attention mechanism is divided;
- mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1.
- Methods:
- forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers.
- Examples:
- Create a ABlock and perform a forward pass
- >>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
-
- Notes:
- recommend that dim//num_heads be a multiple of 32 or 64.
- """
- def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1):
- """Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction."""
- super().__init__()
- self.attn = AAttn(dim, num_heads=num_heads, area=area)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))
- self.apply(self._init_weights)
- def _init_weights(self, m):
- """Initialize weights using a truncated normal distribution."""
- if isinstance(m, nn.Conv2d):
- nn.init.trunc_normal_(m.weight, std=0.02)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- def forward(self, x):
- """Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor."""
- x = x + self.attn(x)
- x = x + self.mlp(x)
- return x
- class A2C2f(nn.Module):
- """
- A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN
- This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction.
- Attributes:
- c1 (int): Number of input channels;
- c2 (int): Number of output channels;
- n (int, optional): Number of 2xABlock modules to stack. Defaults to 1;
- a2 (bool, optional): Whether use area-attention. Defaults to True;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1;
- residual (bool, optional): Whether use the residual (with layer scale). Defaults to False;
- mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
- e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5;
- g (int, optional): Number of groups for grouped convolution. Defaults to 1;
- shortcut (bool, optional): Whether to use shortcut connection. Defaults to True;
- Methods:
- forward: Performs a forward pass through the A2C2f module.
- Examples:
- >>> import torch
- >>> from ultralytics.nn.modules import A2C2f
- >>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
- """
- def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True):
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."
- # num_heads = c_ // 64 if c_ // 64 >= 2 else c_ // 32
- num_heads = c_ // 32
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv((1 + n) * c_, c2, 1) # optional act=FReLU(c2)
- init_values = 0.01 # or smaller
- self.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else None
- self.m = nn.ModuleList(
- nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n)
- )
- def forward(self, x):
- """Forward pass through R-ELAN layer."""
- y = [self.cv1(x)]
- y.extend(m(y[-1]) for m in self.m)
- if self.gamma is not None:
- return x + self.gamma.view(1, -1, 1, 1) * self.cv2(torch.cat(y, 1))
- return self.cv2(torch.cat(y, 1))
- class DSBottleneck(nn.Module):
- def __init__(self, c1, c2, shortcut=True, e=0.5, k1=3, k2=5, d2=1):
- super().__init__()
- c_ = int(c2 * e)
- self.cv1 = DSConv(c1, c_, k1, s=1, p=None, d=1)
- self.cv2 = DSConv(c_, c2, k2, s=1, p=None, d=d2)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- y = self.cv2(self.cv1(x))
- return x + y if self.add else y
- class DSC3k(C3):
- def __init__(
- self,
- c1,
- c2,
- n=1,
- shortcut=True,
- g=1,
- e=0.5,
- k1=3,
- k2=5,
- d2=1
- ):
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = nn.Sequential(
- *(
- DSBottleneck(
- c_, c_,
- shortcut=shortcut,
- e=1.0,
- k1=k1,
- k2=k2,
- d2=d2
- )
- for _ in range(n)
- )
- )
- class DSC3k2(C2f):
- def __init__(
- self,
- c1,
- c2,
- n=1,
- dsc3k=False,
- e=0.5,
- g=1,
- shortcut=True,
- k1=3,
- k2=7,
- d2=1
- ):
- super().__init__(c1, c2, n, shortcut, g, e)
- if dsc3k:
- self.m = nn.ModuleList(
- DSC3k(
- self.c, self.c,
- n=2,
- shortcut=shortcut,
- g=g,
- e=1.0,
- k1=k1,
- k2=k2,
- d2=d2
- )
- for _ in range(n)
- )
- else:
- self.m = nn.ModuleList(
- DSBottleneck(
- self.c, self.c,
- shortcut=shortcut,
- e=1.0,
- k1=k1,
- k2=k2,
- d2=d2
- )
- for _ in range(n)
- )
- class AdaHyperedgeGen(nn.Module):
- def __init__(self, node_dim, num_hyperedges, num_heads=4, dropout=0.1, context="both"):
- super().__init__()
- self.num_heads = num_heads
- self.num_hyperedges = num_hyperedges
- self.head_dim = node_dim // num_heads
- self.context = context
- self.prototype_base = nn.Parameter(torch.Tensor(num_hyperedges, node_dim))
- nn.init.xavier_uniform_(self.prototype_base)
- if context in ("mean", "max"):
- self.context_net = nn.Linear(node_dim, num_hyperedges * node_dim)
- elif context == "both":
- self.context_net = nn.Linear(2*node_dim, num_hyperedges * node_dim)
- else:
- raise ValueError(
- f"Unsupported context '{context}'. "
- "Expected one of: 'mean', 'max', 'both'."
- )
- self.pre_head_proj = nn.Linear(node_dim, node_dim)
-
- self.dropout = nn.Dropout(dropout)
- self.scaling = math.sqrt(self.head_dim)
- def forward(self, X):
- B, N, D = X.shape
- if self.context == "mean":
- context_cat = X.mean(dim=1)
- elif self.context == "max":
- context_cat, _ = X.max(dim=1)
- else:
- avg_context = X.mean(dim=1)
- max_context, _ = X.max(dim=1)
- context_cat = torch.cat([avg_context, max_context], dim=-1)
- prototype_offsets = self.context_net(context_cat).view(B, self.num_hyperedges, D)
- prototypes = self.prototype_base.unsqueeze(0) + prototype_offsets
-
- X_proj = self.pre_head_proj(X)
- X_heads = X_proj.view(B, N, self.num_heads, self.head_dim).transpose(1, 2)
- proto_heads = prototypes.view(B, self.num_hyperedges, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
-
- X_heads_flat = X_heads.reshape(B * self.num_heads, N, self.head_dim)
- proto_heads_flat = proto_heads.reshape(B * self.num_heads, self.num_hyperedges, self.head_dim).transpose(1, 2)
-
- logits = torch.bmm(X_heads_flat, proto_heads_flat) / self.scaling
- logits = logits.view(B, self.num_heads, N, self.num_hyperedges).mean(dim=1)
-
- logits = self.dropout(logits)
- return F.softmax(logits, dim=1)
- class AdaHGConv(nn.Module):
- def __init__(self, embed_dim, num_hyperedges=16, num_heads=4, dropout=0.1, context="both"):
- super().__init__()
- self.edge_generator = AdaHyperedgeGen(embed_dim, num_hyperedges, num_heads, dropout, context)
- self.edge_proj = nn.Sequential(
- nn.Linear(embed_dim, embed_dim ),
- nn.GELU()
- )
- self.node_proj = nn.Sequential(
- nn.Linear(embed_dim, embed_dim ),
- nn.GELU()
- )
-
- def forward(self, X):
- A = self.edge_generator(X)
-
- He = torch.bmm(A.transpose(1, 2), X)
- He = self.edge_proj(He)
-
- X_new = torch.bmm(A, He)
- X_new = self.node_proj(X_new)
-
- return X_new + X
-
- class AdaHGComputation(nn.Module):
- def __init__(self, embed_dim, num_hyperedges=16, num_heads=8, dropout=0.1, context="both"):
- super().__init__()
- self.embed_dim = embed_dim
- self.hgnn = AdaHGConv(
- embed_dim=embed_dim,
- num_hyperedges=num_hyperedges,
- num_heads=num_heads,
- dropout=dropout,
- context=context
- )
-
- def forward(self, x):
- B, C, H, W = x.shape
- tokens = x.flatten(2).transpose(1, 2)
- tokens = self.hgnn(tokens)
- x_out = tokens.transpose(1, 2).view(B, C, H, W)
- return x_out
- class C3AH(nn.Module):
- def __init__(self, c1, c2, e=1.0, num_hyperedges=8, context="both"):
- super().__init__()
- c_ = int(c2 * e)
- assert c_ % 16 == 0, "Dimension of AdaHGComputation should be a multiple of 16."
- num_heads = c_ // 16
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.m = AdaHGComputation(embed_dim=c_,
- num_hyperedges=num_hyperedges,
- num_heads=num_heads,
- dropout=0.1,
- context=context)
- self.cv3 = Conv(2 * c_, c2, 1)
-
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class FuseModule(nn.Module):
- def __init__(self, c_in, channel_adjust):
- super(FuseModule, self).__init__()
- self.downsample = nn.AvgPool2d(kernel_size=2)
- self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
- if channel_adjust:
- self.conv_out = Conv(4 * c_in, c_in, 1)
- else:
- self.conv_out = Conv(3 * c_in, c_in, 1)
- def forward(self, x):
- x1_ds = self.downsample(x[0])
- x3_up = self.upsample(x[2])
- x_cat = torch.cat([x1_ds, x[1], x3_up], dim=1)
- out = self.conv_out(x_cat)
- return out
- class HyperACE(nn.Module):
- def __init__(self, c1, c2, n=1, num_hyperedges=8, dsc3k=True, shortcut=False, e1=0.5, e2=1, context="both", channel_adjust=True):
- super().__init__()
- self.c = int(c2 * e1)
- self.cv1 = Conv(c1, 3 * self.c, 1, 1)
- self.cv2 = Conv((4 + n) * self.c, c2, 1)
- self.m = nn.ModuleList(
- DSC3k(self.c, self.c, 2, shortcut, k1=3, k2=7) if dsc3k else DSBottleneck(self.c, self.c, shortcut=shortcut) for _ in range(n)
- )
- self.fuse = FuseModule(c1, channel_adjust)
- self.branch1 = C3AH(self.c, self.c, e2, num_hyperedges, context)
- self.branch2 = C3AH(self.c, self.c, e2, num_hyperedges, context)
-
- def forward(self, X):
- x = self.fuse(X)
- y = list(self.cv1(x).chunk(3, 1))
- out1 = self.branch1(y[1])
- out2 = self.branch2(y[1])
- y.extend(m(y[-1]) for m in self.m)
- y[1] = out1
- y.append(out2)
- return self.cv2(torch.cat(y, 1))
- class DownsampleConv(nn.Module):
- def __init__(self, in_channels, channel_adjust=True):
- super().__init__()
- self.downsample = nn.AvgPool2d(kernel_size=2)
- if channel_adjust:
- self.channel_adjust = Conv(in_channels, in_channels * 2, 1)
- else:
- self.channel_adjust = nn.Identity()
- def forward(self, x):
- return self.channel_adjust(self.downsample(x))
- class FullPAD_Tunnel(nn.Module):
- def __init__(self):
- super().__init__()
- self.gate = nn.Parameter(torch.tensor(0.0))
- def forward(self, x):
- out = x[0] + self.gate * x[1]
- return out
|