predict.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. from ultralytics.engine.predictor import BasePredictor
  3. from ultralytics.engine.results import Results
  4. from ultralytics.utils import ops
  5. class DetectionPredictor(BasePredictor):
  6. """
  7. A class extending the BasePredictor class for prediction based on a detection model.
  8. Example:
  9. ```python
  10. from ultralytics.utils import ASSETS
  11. from ultralytics.models.yolo.detect import DetectionPredictor
  12. args = dict(model="yolo11n.pt", source=ASSETS)
  13. predictor = DetectionPredictor(overrides=args)
  14. predictor.predict_cli()
  15. ```
  16. """
  17. def postprocess(self, preds, img, orig_imgs):
  18. """Post-processes predictions and returns a list of Results objects."""
  19. preds = ops.non_max_suppression(
  20. preds,
  21. self.args.conf,
  22. self.args.iou,
  23. agnostic=self.args.agnostic_nms,
  24. max_det=self.args.max_det,
  25. classes=self.args.classes,
  26. )
  27. if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
  28. orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
  29. results = []
  30. for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
  31. pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
  32. results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
  33. return results