123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- from typing import Tuple, Union
- import cv2
- import numpy as np
- import tensorflow as tf
- import yaml
- from ultralytics.utils import ASSETS
- try:
- from tflite_runtime.interpreter import Interpreter
- except ImportError:
- import tensorflow as tf
- Interpreter = tf.lite.Interpreter
- class YOLOv8TFLite:
- """
- YOLOv8TFLite.
- A class for performing object detection using the YOLOv8 model with TensorFlow Lite.
- Attributes:
- model (str): Path to the TensorFlow Lite model file.
- conf (float): Confidence threshold for filtering detections.
- iou (float): Intersection over Union threshold for non-maximum suppression.
- metadata (Optional[str]): Path to the metadata file, if any.
- Methods:
- detect(img_path: str) -> np.ndarray:
- Performs inference and returns the output image with drawn detections.
- """
- def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
- """
- Initializes an instance of the YOLOv8TFLite class.
- Args:
- model (str): Path to the TFLite model.
- conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
- iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
- metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
- """
- self.conf = conf
- self.iou = iou
- if metadata is None:
- self.classes = {i: i for i in range(1000)}
- else:
- with open(metadata) as f:
- self.classes = yaml.safe_load(f)["names"]
- np.random.seed(42)
- self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
- self.model = Interpreter(model_path=model)
- self.model.allocate_tensors()
- input_details = self.model.get_input_details()[0]
- self.in_width, self.in_height = input_details["shape"][1:3]
- self.in_index = input_details["index"]
- self.in_scale, self.in_zero_point = input_details["quantization"]
- self.int8 = input_details["dtype"] == np.int8
- output_details = self.model.get_output_details()[0]
- self.out_index = output_details["index"]
- self.out_scale, self.out_zero_point = output_details["quantization"]
- def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
- """Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
- shape = img.shape[:2] # current shape [height, width]
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- # Compute padding
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
- return img, (top / img.shape[0], left / img.shape[1])
- def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
- """
- Draws bounding boxes and labels on the input image based on the detected objects.
- Args:
- img (np.ndarray): The input image to draw detections on.
- box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
- score (np.float32): Corresponding detection score.
- class_id (int): Class ID for the detected object.
- Returns:
- None
- """
- x1, y1, w, h = box
- color = self.color_palette[class_id]
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
- label = f"{self.classes[class_id]}: {score:.2f}"
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- cv2.rectangle(
- img,
- (int(label_x), int(label_y - label_height)),
- (int(label_x + label_width), int(label_y + label_height)),
- color,
- cv2.FILLED,
- )
- cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
- def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
- """
- Preprocesses the input image before performing inference.
- Args:
- img (np.ndarray): The input image to be preprocessed.
- Returns:
- Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
- - The preprocessed image (np.ndarray).
- - A tuple of two float values representing the padding applied (top/bottom, left/right).
- """
- img, pad = self.letterbox(img, (self.in_width, self.in_height))
- img = img[..., ::-1][None] # N,H,W,C for TFLite
- img = np.ascontiguousarray(img)
- img = img.astype(np.float32)
- return img / 255, pad
- def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
- """
- Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
- Args:
- img (numpy.ndarray): The input image.
- outputs (numpy.ndarray): The output of the model.
- pad (Tuple[float, float]): Padding used by letterbox.
- Returns:
- numpy.ndarray: The input image with detections drawn on it.
- """
- outputs[:, 0] -= pad[1]
- outputs[:, 1] -= pad[0]
- outputs[:, :4] *= max(img.shape)
- outputs = outputs.transpose(0, 2, 1)
- outputs[..., 0] -= outputs[..., 2] / 2
- outputs[..., 1] -= outputs[..., 3] / 2
- for out in outputs:
- scores = out[:, 4:].max(-1)
- keep = scores > self.conf
- boxes = out[keep, :4]
- scores = scores[keep]
- class_ids = out[keep, 4:].argmax(-1)
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
- [self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
- return img
- def detect(self, img_path: str) -> np.ndarray:
- """
- Performs inference using a TFLite model and returns the output image with drawn detections.
- Args:
- img_path (str): The path to the input image file.
- Returns:
- np.ndarray: The output image with drawn detections.
- """
- img = cv2.imread(img_path)
- x, pad = self.preprocess(img)
- if self.int8:
- x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
- self.model.set_tensor(self.in_index, x)
- self.model.invoke()
- y = self.model.get_tensor(self.out_index)
- if self.int8:
- y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
- return self.postprocess(img, y, pad)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model",
- type=str,
- default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
- help="Path to TFLite model.",
- )
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
- parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
- parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
- args = parser.parse_args()
- detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
- result = detector.detect(str(ASSETS / "bus.jpg"))
- cv2.imshow("Output", result)
- cv2.waitKey(0)
|