123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """
- Export a YOLO PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
- Format | `format=argument` | Model
- --- | --- | ---
- PyTorch | - | yolo11n.pt
- TorchScript | `torchscript` | yolo11n.torchscript
- ONNX | `onnx` | yolo11n.onnx
- OpenVINO | `openvino` | yolo11n_openvino_model/
- TensorRT | `engine` | yolo11n.engine
- CoreML | `coreml` | yolo11n.mlpackage
- TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
- TensorFlow GraphDef | `pb` | yolo11n.pb
- TensorFlow Lite | `tflite` | yolo11n.tflite
- TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolo11n_web_model/
- PaddlePaddle | `paddle` | yolo11n_paddle_model/
- MNN | `mnn` | yolo11n.mnn
- NCNN | `ncnn` | yolo11n_ncnn_model/
- IMX | `imx` | yolo11n_imx_model/
- Requirements:
- $ pip install "ultralytics[export]"
- Python:
- from ultralytics import YOLO
- model = YOLO('yolo11n.pt')
- results = model.export(format='onnx')
- CLI:
- $ yolo mode=export model=yolo11n.pt format=onnx
- Inference:
- $ yolo predict model=yolo11n.pt # PyTorch
- yolo11n.torchscript # TorchScript
- yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
- yolo11n_openvino_model # OpenVINO
- yolo11n.engine # TensorRT
- yolo11n.mlpackage # CoreML (macOS-only)
- yolo11n_saved_model # TensorFlow SavedModel
- yolo11n.pb # TensorFlow GraphDef
- yolo11n.tflite # TensorFlow Lite
- yolo11n_edgetpu.tflite # TensorFlow Edge TPU
- yolo11n_paddle_model # PaddlePaddle
- yolo11n.mnn # MNN
- yolo11n_ncnn_model # NCNN
- yolo11n_imx_model # IMX
- TensorFlow.js:
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolo11n_web_model public/yolo11n_web_model
- $ npm start
- """
- import gc
- import json
- import os
- import shutil
- import subprocess
- import time
- import warnings
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import numpy as np
- import torch
- from ultralytics.cfg import TASK2DATA, get_cfg
- from ultralytics.data import build_dataloader
- from ultralytics.data.dataset import YOLODataset
- from ultralytics.data.utils import check_cls_dataset, check_det_dataset
- from ultralytics.nn.autobackend import check_class_names, default_class_names
- from ultralytics.nn.modules import C2f, Classify, Detect, RTDETRDecoder
- from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
- from ultralytics.utils import (
- ARM64,
- DEFAULT_CFG,
- IS_JETSON,
- LINUX,
- LOGGER,
- MACOS,
- PYTHON_VERSION,
- ROOT,
- WINDOWS,
- __version__,
- callbacks,
- colorstr,
- get_default_args,
- yaml_save,
- )
- from ultralytics.utils.checks import (
- check_imgsz,
- check_is_path_safe,
- check_requirements,
- check_version,
- is_sudo_available,
- )
- from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
- from ultralytics.utils.files import file_size, spaces_in_path
- from ultralytics.utils.ops import Profile
- from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
- def export_formats():
- """Ultralytics YOLO export formats."""
- x = [
- ["PyTorch", "-", ".pt", True, True, []],
- ["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize"]],
- ["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify"]],
- ["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8"]],
- ["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify"]],
- ["CoreML", "coreml", ".mlpackage", True, False, ["batch", "half", "int8", "nms"]],
- ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras"]],
- ["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
- ["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8"]],
- ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
- ["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8"]],
- ["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
- ["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
- ["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
- ["IMX", "imx", "_imx_model", True, True, ["int8"]],
- ]
- return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
- def validate_args(format, passed_args, valid_args):
- """
- Validates arguments based on format.
- Args:
- format (str): The export format.
- passed_args (Namespace): The arguments used during export.
- valid_args (dict): List of valid arguments for the format.
- Raises:
- AssertionError: If an argument that's not supported by the export format is used, or if format doesn't have the supported arguments listed.
- """
- # Only check valid usage of these args
- export_args = ["half", "int8", "dynamic", "keras", "nms", "batch"]
- assert valid_args is not None, f"ERROR ❌️ valid arguments for '{format}' not listed."
- custom = {"batch": 1, "data": None, "device": None} # exporter defaults
- default_args = get_cfg(DEFAULT_CFG, custom)
- for arg in export_args:
- not_default = getattr(passed_args, arg, None) != getattr(default_args, arg, None)
- if not_default:
- assert arg in valid_args, f"ERROR ❌️ argument '{arg}' is not supported for format='{format}'"
- def gd_outputs(gd):
- """TensorFlow GraphDef model output node names."""
- name_list, input_list = [], []
- for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
- name_list.append(node.name)
- input_list.extend(node.input)
- return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
- def try_export(inner_func):
- """YOLO export decorator, i.e. @try_export."""
- inner_args = get_default_args(inner_func)
- def outer_func(*args, **kwargs):
- """Export a model."""
- prefix = inner_args["prefix"]
- try:
- with Profile() as dt:
- f, model = inner_func(*args, **kwargs)
- LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)")
- return f, model
- except Exception as e:
- LOGGER.error(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
- raise e
- return outer_func
- class Exporter:
- """
- A class for exporting a model.
- Attributes:
- args (SimpleNamespace): Configuration for the exporter.
- callbacks (list, optional): List of callback functions. Defaults to None.
- """
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
- """
- Initializes the Exporter class.
- Args:
- cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
- overrides (dict, optional): Configuration overrides. Defaults to None.
- _callbacks (dict, optional): Dictionary of callback functions. Defaults to None.
- """
- self.args = get_cfg(cfg, overrides)
- if self.args.format.lower() in {"coreml", "mlmodel"}: # fix attempt for protobuf<3.20.x errors
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback
- self.callbacks = _callbacks or callbacks.get_default_callbacks()
- callbacks.add_integration_callbacks(self)
- def __call__(self, model=None) -> str:
- """Returns list of exported files/dirs after running callbacks."""
- self.run_callbacks("on_export_start")
- t = time.time()
- fmt = self.args.format.lower() # to lowercase
- if fmt in {"tensorrt", "trt"}: # 'engine' aliases
- fmt = "engine"
- if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
- fmt = "coreml"
- fmts_dict = export_formats()
- fmts = tuple(fmts_dict["Argument"][1:]) # available export formats
- if fmt not in fmts:
- import difflib
- # Get the closest match if format is invalid
- matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
- if not matches:
- raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
- LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
- fmt = matches[0]
- flags = [x == fmt for x in fmts]
- if sum(flags) != 1:
- raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
- (
- jit,
- onnx,
- xml,
- engine,
- coreml,
- saved_model,
- pb,
- tflite,
- edgetpu,
- tfjs,
- paddle,
- mnn,
- ncnn,
- imx,
- ) = flags # export booleans
- is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
- # Device
- dla = None
- if fmt == "engine" and self.args.device is None:
- LOGGER.warning("WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0")
- self.args.device = "0"
- if fmt == "engine" and "dla" in str(self.args.device): # convert int/list to str first
- dla = self.args.device.split(":")[-1]
- self.args.device = "0" # update device to "0"
- assert dla in {"0", "1"}, f"Expected self.args.device='dla:0' or 'dla:1, but got {self.args.device}."
- self.device = select_device("cpu" if self.args.device is None else self.args.device)
- # Argument compatibility checks
- fmt_keys = fmts_dict["Arguments"][flags.index(True) + 1]
- validate_args(fmt, self.args, fmt_keys)
- if imx and not self.args.int8:
- LOGGER.warning("WARNING ⚠️ IMX only supports int8 export, setting int8=True.")
- self.args.int8 = True
- if not hasattr(model, "names"):
- model.names = default_class_names()
- model.names = check_class_names(model.names)
- if self.args.half and self.args.int8:
- LOGGER.warning("WARNING ⚠️ half=True and int8=True are mutually exclusive, setting half=False.")
- self.args.half = False
- if self.args.half and onnx and self.device.type == "cpu":
- LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0")
- self.args.half = False
- assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one."
- self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
- if self.args.int8 and engine:
- self.args.dynamic = True # enforce dynamic to export TensorRT INT8
- if self.args.optimize:
- assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
- assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
- if self.args.int8 and tflite:
- assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
- if edgetpu:
- if not LINUX:
- raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
- elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420
- LOGGER.warning("WARNING ⚠️ Edge TPU export requires batch size 1, setting batch=1.")
- self.args.batch = 1
- if isinstance(model, WorldModel):
- LOGGER.warning(
- "WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n"
- "WARNING ⚠️ YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to "
- "(torchscript, onnx, openvino, engine, coreml) formats. "
- "See https://docs.ultralytics.com/models/yolo-world for details."
- )
- model.clip_model = None # openvino int8 export error: https://github.com/ultralytics/ultralytics/pull/18445
- if self.args.int8 and not self.args.data:
- self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")] # assign default data
- LOGGER.warning(
- "WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
- f"Using default 'data={self.args.data}'."
- )
- # Input
- im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
- file = Path(
- getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
- )
- if file.suffix in {".yaml", ".yml"}:
- file = Path(file.name)
- # Update model
- model = deepcopy(model).to(self.device)
- for p in model.parameters():
- p.requires_grad = False
- model.eval()
- model.float()
- model = model.fuse()
- if imx:
- from ultralytics.utils.torch_utils import FXModel
- model = FXModel(model)
- for m in model.modules():
- if isinstance(m, Classify):
- m.export = True
- if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
- m.dynamic = self.args.dynamic
- m.export = True
- m.format = self.args.format
- m.max_det = self.args.max_det
- elif isinstance(m, C2f) and not is_tf_format:
- # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
- m.forward = m.forward_split
- if isinstance(m, Detect) and imx:
- from ultralytics.utils.tal import make_anchors
- m.anchors, m.strides = (
- x.transpose(0, 1)
- for x in make_anchors(
- torch.cat([s / m.stride.unsqueeze(-1) for s in self.imgsz], dim=1), m.stride, 0.5
- )
- )
- y = None
- for _ in range(2):
- y = model(im) # dry runs
- if self.args.half and onnx and self.device.type != "cpu":
- im, model = im.half(), model.half() # to FP16
- # Filter warnings
- warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
- warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning
- warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
- # Assign
- self.im = im
- self.model = model
- self.file = file
- self.output_shape = (
- tuple(y.shape)
- if isinstance(y, torch.Tensor)
- else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
- )
- self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
- data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
- description = f"Ultralytics {self.pretty_name} model {f'trained on {data}' if data else ''}"
- self.metadata = {
- "description": description,
- "author": "Ultralytics",
- "date": datetime.now().isoformat(),
- "version": __version__,
- "license": "AGPL-3.0 License (https://ultralytics.com/license)",
- "docs": "https://docs.ultralytics.com",
- "stride": int(max(model.stride)),
- "task": model.task,
- "batch": self.args.batch,
- "imgsz": self.imgsz,
- "names": model.names,
- "args": {k: v for k, v in self.args if k in fmt_keys},
- } # model metadata
- if model.task == "pose":
- self.metadata["kpt_shape"] = model.model[-1].kpt_shape
- LOGGER.info(
- f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
- f"output shape(s) {self.output_shape} ({file_size(file):.1f} MB)"
- )
- # Exports
- f = [""] * len(fmts) # exported filenames
- if jit or ncnn: # TorchScript
- f[0], _ = self.export_torchscript()
- if engine: # TensorRT required before ONNX
- f[1], _ = self.export_engine(dla=dla)
- if onnx: # ONNX
- f[2], _ = self.export_onnx()
- if xml: # OpenVINO
- f[3], _ = self.export_openvino()
- if coreml: # CoreML
- f[4], _ = self.export_coreml()
- if is_tf_format: # TensorFlow formats
- self.args.int8 |= edgetpu
- f[5], keras_model = self.export_saved_model()
- if pb or tfjs: # pb prerequisite to tfjs
- f[6], _ = self.export_pb(keras_model=keras_model)
- if tflite:
- f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
- if edgetpu:
- f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
- if tfjs:
- f[9], _ = self.export_tfjs()
- if paddle: # PaddlePaddle
- f[10], _ = self.export_paddle()
- if mnn: # MNN
- f[11], _ = self.export_mnn()
- if ncnn: # NCNN
- f[12], _ = self.export_ncnn()
- if imx:
- f[13], _ = self.export_imx()
- # Finish
- f = [str(x) for x in f if x] # filter out '' and None
- if any(f):
- f = str(Path(f[-1]))
- square = self.imgsz[0] == self.imgsz[1]
- s = (
- ""
- if square
- else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
- f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
- )
- imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
- predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else ""
- q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
- LOGGER.info(
- f"\nExport complete ({time.time() - t:.1f}s)"
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
- f"\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}"
- f"\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}"
- f"\nVisualize: https://netron.app"
- )
- self.run_callbacks("on_export_end")
- return f # return list of exported files/dirs
- def get_int8_calibration_dataloader(self, prefix=""):
- """Build and return a dataloader suitable for calibration of INT8 models."""
- LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
- data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data)
- # TensorRT INT8 calibration should use 2x batch size
- batch = self.args.batch * (2 if self.args.format == "engine" else 1)
- dataset = YOLODataset(
- data[self.args.split or "val"],
- data=data,
- task=self.model.task,
- imgsz=self.imgsz[0],
- augment=False,
- batch_size=batch,
- )
- n = len(dataset)
- if n < self.args.batch:
- raise ValueError(
- f"The calibration dataset ({n} images) must have at least as many images as the batch size ('batch={self.args.batch}')."
- )
- elif n < 300:
- LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
- return build_dataloader(dataset, batch=batch, workers=0) # required for batch loading
- @try_export
- def export_torchscript(self, prefix=colorstr("TorchScript:")):
- """YOLO TorchScript model export."""
- LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
- f = self.file.with_suffix(".torchscript")
- ts = torch.jit.trace(self.model, self.im, strict=False)
- extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
- if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
- LOGGER.info(f"{prefix} optimizing for mobile...")
- from torch.utils.mobile_optimizer import optimize_for_mobile
- optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
- else:
- ts.save(str(f), _extra_files=extra_files)
- return f, None
- @try_export
- def export_onnx(self, prefix=colorstr("ONNX:")):
- """YOLO ONNX export."""
- requirements = ["onnx>=1.12.0"]
- if self.args.simplify:
- requirements += ["onnxslim", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
- check_requirements(requirements)
- import onnx # noqa
- opset_version = self.args.opset or get_latest_opset()
- LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
- f = str(self.file.with_suffix(".onnx"))
- output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
- dynamic = self.args.dynamic
- if dynamic:
- dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
- if isinstance(self.model, SegmentationModel):
- dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
- dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
- elif isinstance(self.model, DetectionModel):
- dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
- torch.onnx.export(
- self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu
- self.im.cpu() if dynamic else self.im,
- f,
- verbose=False,
- opset_version=opset_version,
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
- input_names=["images"],
- output_names=output_names,
- dynamic_axes=dynamic or None,
- )
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- # Simplify
- if self.args.simplify:
- try:
- import onnxslim
- LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
- model_onnx = onnxslim.slim(model_onnx)
- except Exception as e:
- LOGGER.warning(f"{prefix} simplifier failure: {e}")
- # Metadata
- for k, v in self.metadata.items():
- meta = model_onnx.metadata_props.add()
- meta.key, meta.value = k, str(v)
- onnx.save(model_onnx, f)
- return f, model_onnx
- @try_export
- def export_openvino(self, prefix=colorstr("OpenVINO:")):
- """YOLO OpenVINO export."""
- check_requirements("openvino>=2024.5.0")
- import openvino as ov
- LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
- assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
- ov_model = ov.convert_model(
- self.model,
- input=None if self.args.dynamic else [self.im.shape],
- example_input=self.im,
- )
- def serialize(ov_model, file):
- """Set RT info, serialize and save metadata YAML."""
- ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
- ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
- ov_model.set_rt_info(114, ["model_info", "pad_value"])
- ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
- ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
- ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
- if self.model.task != "classify":
- ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
- ov.runtime.save_model(ov_model, file, compress_to_fp16=self.args.half)
- yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
- if self.args.int8:
- fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
- fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
- check_requirements("nncf>=2.14.0")
- import nncf
- def transform_fn(data_item) -> np.ndarray:
- """Quantization transform function."""
- data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item
- assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing"
- im = data_item.numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0
- return np.expand_dims(im, 0) if im.ndim == 3 else im
- # Generate calibration data for integer quantization
- ignored_scope = None
- if isinstance(self.model.model[-1], Detect):
- # Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
- head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
- ignored_scope = nncf.IgnoredScope( # ignore operations
- patterns=[
- f".*{head_module_name}/.*/Add",
- f".*{head_module_name}/.*/Sub*",
- f".*{head_module_name}/.*/Mul*",
- f".*{head_module_name}/.*/Div*",
- f".*{head_module_name}\\.dfl.*",
- ],
- types=["Sigmoid"],
- )
- quantized_ov_model = nncf.quantize(
- model=ov_model,
- calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), transform_fn),
- preset=nncf.QuantizationPreset.MIXED,
- ignored_scope=ignored_scope,
- )
- serialize(quantized_ov_model, fq_ov)
- return fq, None
- f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
- f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
- serialize(ov_model, f_ov)
- return f, None
- @try_export
- def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
- """YOLO Paddle export."""
- check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle", "x2paddle"))
- import x2paddle # noqa
- from x2paddle.convert import pytorch2paddle # noqa
- LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
- f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")
- pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export
- yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_mnn(self, prefix=colorstr("MNN:")):
- """YOLOv8 MNN export using MNN https://github.com/alibaba/MNN."""
- f_onnx, _ = self.export_onnx() # get onnx model first
- check_requirements("MNN>=2.9.6")
- import MNN # noqa
- from MNN.tools import mnnconvert
- # Setup and checks
- LOGGER.info(f"\n{prefix} starting export with MNN {MNN.version()}...")
- assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
- f = str(self.file.with_suffix(".mnn")) # MNN model file
- args = ["", "-f", "ONNX", "--modelFile", f_onnx, "--MNNModel", f, "--bizCode", json.dumps(self.metadata)]
- if self.args.int8:
- args.extend(("--weightQuantBits", "8"))
- if self.args.half:
- args.append("--fp16")
- mnnconvert.convert(args)
- # remove scratch file for model convert optimize
- convert_scratch = Path(self.file.parent / ".__convert_external_data.bin")
- if convert_scratch.exists():
- convert_scratch.unlink()
- return f, None
- @try_export
- def export_ncnn(self, prefix=colorstr("NCNN:")):
- """YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""
- check_requirements("ncnn")
- import ncnn # noqa
- LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__}...")
- f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
- f_ts = self.file.with_suffix(".torchscript")
- name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename
- pnnx = name if name.is_file() else (ROOT / name)
- if not pnnx.is_file():
- LOGGER.warning(
- f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from "
- "https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory "
- f"or in {ROOT}. See PNNX repo for full installation instructions."
- )
- system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
- try:
- release, assets = get_github_assets(repo="pnnx/pnnx")
- asset = [x for x in assets if f"{system}.zip" in x][0]
- assert isinstance(asset, str), "Unable to retrieve PNNX repo assets" # i.e. pnnx-20240410-macos.zip
- LOGGER.info(f"{prefix} successfully found latest PNNX asset file {asset}")
- except Exception as e:
- release = "20240410"
- asset = f"pnnx-{release}-{system}.zip"
- LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {asset}")
- unzip_dir = safe_download(f"https://github.com/pnnx/pnnx/releases/download/{release}/{asset}", delete=True)
- if check_is_path_safe(Path.cwd(), unzip_dir): # avoid path traversal security vulnerability
- shutil.move(src=unzip_dir / name, dst=pnnx) # move binary to ROOT
- pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
- shutil.rmtree(unzip_dir) # delete unzip dir
- ncnn_args = [
- f"ncnnparam={f / 'model.ncnn.param'}",
- f"ncnnbin={f / 'model.ncnn.bin'}",
- f"ncnnpy={f / 'model_ncnn.py'}",
- ]
- pnnx_args = [
- f"pnnxparam={f / 'model.pnnx.param'}",
- f"pnnxbin={f / 'model.pnnx.bin'}",
- f"pnnxpy={f / 'model_pnnx.py'}",
- f"pnnxonnx={f / 'model.pnnx.onnx'}",
- ]
- cmd = [
- str(pnnx),
- str(f_ts),
- *ncnn_args,
- *pnnx_args,
- f"fp16={int(self.args.half)}",
- f"device={self.device.type}",
- f'inputshape="{[self.args.batch, 3, *self.imgsz]}"',
- ]
- f.mkdir(exist_ok=True) # make ncnn_model directory
- LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
- subprocess.run(cmd, check=True)
- # Remove debug files
- pnnx_files = [x.split("=")[-1] for x in pnnx_args]
- for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files):
- Path(f_debug).unlink(missing_ok=True)
- yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
- return str(f), None
- @try_export
- def export_coreml(self, prefix=colorstr("CoreML:")):
- """YOLO CoreML export."""
- mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
- check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0")
- import coremltools as ct # noqa
- LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
- assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
- assert self.args.batch == 1, "CoreML batch sizes > 1 are not supported. Please retry at 'batch=1'."
- f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
- if f.is_dir():
- shutil.rmtree(f)
- if self.args.nms and getattr(self.model, "end2end", False):
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
- self.args.nms = False
- bias = [0.0, 0.0, 0.0]
- scale = 1 / 255
- classifier_config = None
- if self.model.task == "classify":
- classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
- model = self.model
- elif self.model.task == "detect":
- model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
- else:
- if self.args.nms:
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
- # TODO CoreML Segment and Pose model pipelining
- model = self.model
- ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
- ct_model = ct.convert(
- ts,
- inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)],
- classifier_config=classifier_config,
- convert_to="neuralnetwork" if mlmodel else "mlprogram",
- )
- bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
- if bits < 32:
- if "kmeans" in mode:
- check_requirements("scikit-learn") # scikit-learn package required for k-means quantization
- if mlmodel:
- ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
- elif bits == 8: # mlprogram already quantized to FP16
- import coremltools.optimize.coreml as cto
- op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
- config = cto.OptimizationConfig(global_config=op_config)
- ct_model = cto.palettize_weights(ct_model, config=config)
- if self.args.nms and self.model.task == "detect":
- if mlmodel:
- # coremltools<=6.2 NMS export requires Python<3.11
- check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
- weights_dir = None
- else:
- ct_model.save(str(f)) # save otherwise weights_dir does not exist
- weights_dir = str(f / "Data/com.apple.CoreML/weights")
- ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)
- m = self.metadata # metadata dict
- ct_model.short_description = m.pop("description")
- ct_model.author = m.pop("author")
- ct_model.license = m.pop("license")
- ct_model.version = m.pop("version")
- ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
- try:
- ct_model.save(str(f)) # save *.mlpackage
- except Exception as e:
- LOGGER.warning(
- f"{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
- f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
- )
- f = f.with_suffix(".mlmodel")
- ct_model.save(str(f))
- return f, ct_model
- @try_export
- def export_engine(self, dla=None, prefix=colorstr("TensorRT:")):
- """YOLO TensorRT export https://developer.nvidia.com/tensorrt."""
- assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
- f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
- try:
- import tensorrt as trt # noqa
- except ImportError:
- if LINUX:
- check_requirements("tensorrt>7.0.0,!=10.1.0")
- import tensorrt as trt # noqa
- check_version(trt.__version__, ">=7.0.0", hard=True)
- check_version(trt.__version__, "!=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
- # Setup and checks
- LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
- is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
- assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
- f = self.file.with_suffix(".engine") # TensorRT engine file
- logger = trt.Logger(trt.Logger.INFO)
- if self.args.verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
- # Engine builder
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- workspace = int(self.args.workspace * (1 << 30)) if self.args.workspace is not None else 0
- if is_trt10 and workspace > 0:
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
- elif workspace > 0: # TensorRT versions 7, 8
- config.max_workspace_size = workspace
- flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- network = builder.create_network(flag)
- half = builder.platform_has_fast_fp16 and self.args.half
- int8 = builder.platform_has_fast_int8 and self.args.int8
- # Optionally switch to DLA if enabled
- if dla is not None:
- if not IS_JETSON:
- raise ValueError("DLA is only available on NVIDIA Jetson devices")
- LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
- if not self.args.half and not self.args.int8:
- raise ValueError(
- "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
- )
- config.default_device_type = trt.DeviceType.DLA
- config.DLA_core = int(dla)
- config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
- # Read ONNX file
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(f_onnx):
- raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
- # Network inputs
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- for inp in inputs:
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
- for out in outputs:
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
- if self.args.dynamic:
- shape = self.im.shape
- if shape[0] <= 1:
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
- profile = builder.create_optimization_profile()
- min_shape = (1, shape[1], 32, 32) # minimum input shape
- max_shape = (*shape[:2], *(int(max(1, workspace) * d) for d in shape[2:])) # max input shape
- for inp in inputs:
- profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
- config.add_optimization_profile(profile)
- LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
- if int8:
- config.set_flag(trt.BuilderFlag.INT8)
- config.set_calibration_profile(profile)
- config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
- class EngineCalibrator(trt.IInt8Calibrator):
- def __init__(
- self,
- dataset, # ultralytics.data.build.InfiniteDataLoader
- batch: int,
- cache: str = "",
- ) -> None:
- trt.IInt8Calibrator.__init__(self)
- self.dataset = dataset
- self.data_iter = iter(dataset)
- self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
- self.batch = batch
- self.cache = Path(cache)
- def get_algorithm(self) -> trt.CalibrationAlgoType:
- """Get the calibration algorithm to use."""
- return self.algo
- def get_batch_size(self) -> int:
- """Get the batch size to use for calibration."""
- return self.batch or 1
- def get_batch(self, names) -> list:
- """Get the next batch to use for calibration, as a list of device memory pointers."""
- try:
- im0s = next(self.data_iter)["img"] / 255.0
- im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
- return [int(im0s.data_ptr())]
- except StopIteration:
- # Return [] or None, signal to TensorRT there is no calibration data remaining
- return None
- def read_calibration_cache(self) -> bytes:
- """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
- if self.cache.exists() and self.cache.suffix == ".cache":
- return self.cache.read_bytes()
- def write_calibration_cache(self, cache) -> None:
- """Write calibration cache to disk."""
- _ = self.cache.write_bytes(cache)
- # Load dataset w/ builder (for batching) and calibrate
- config.int8_calibrator = EngineCalibrator(
- dataset=self.get_int8_calibration_dataloader(prefix),
- batch=2 * self.args.batch, # TensorRT INT8 calibration should use 2x batch size
- cache=str(self.file.with_suffix(".cache")),
- )
- elif half:
- config.set_flag(trt.BuilderFlag.FP16)
- # Free CUDA memory
- del self.model
- gc.collect()
- torch.cuda.empty_cache()
- # Write file
- build = builder.build_serialized_network if is_trt10 else builder.build_engine
- with build(network, config) as engine, open(f, "wb") as t:
- # Metadata
- meta = json.dumps(self.metadata)
- t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
- t.write(meta.encode())
- # Model
- t.write(engine if is_trt10 else engine.serialize())
- return f, None
- @try_export
- def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
- """YOLO TensorFlow SavedModel export."""
- cuda = torch.cuda.is_available()
- try:
- import tensorflow as tf # noqa
- except ImportError:
- suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu"
- version = ">=2.0.0"
- check_requirements(f"tensorflow{suffix}{version}")
- import tensorflow as tf # noqa
- check_requirements(
- (
- "keras", # required by 'onnx2tf' package
- "tf_keras", # required by 'onnx2tf' package
- "sng4onnx>=1.0.1", # required by 'onnx2tf' package
- "onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
- "onnx>=1.12.0",
- "onnx2tf>1.17.5,<=1.26.3",
- "onnxslim>=0.1.31",
- "tflite_support<=0.4.3" if IS_JETSON else "tflite_support", # fix ImportError 'GLIBCXX_3.4.29'
- "flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package
- "onnxruntime-gpu" if cuda else "onnxruntime",
- ),
- cmds="--extra-index-url https://pypi.ngc.nvidia.com", # onnx_graphsurgeon only on NVIDIA
- )
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- check_version(
- tf.__version__,
- ">=2.0.0",
- name="tensorflow",
- verbose=True,
- msg="https://github.com/ultralytics/ultralytics/issues/5161",
- )
- import onnx2tf
- f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
- if f.is_dir():
- shutil.rmtree(f) # delete output folder
- # Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
- onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
- if not onnx2tf_file.exists():
- attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)
- # Export to ONNX
- self.args.simplify = True
- f_onnx, _ = self.export_onnx()
- # Export to TF
- np_data = None
- if self.args.int8:
- tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
- if self.args.data:
- f.mkdir()
- images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
- images = torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz).permute(
- 0, 2, 3, 1
- )
- np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
- np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
- LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
- keras_model = onnx2tf.convert(
- input_onnx_file_path=f_onnx,
- output_folder_path=str(f),
- not_use_onnxsim=True,
- verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
- output_integer_quantized_tflite=self.args.int8,
- quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
- custom_input_op_name_np_data_path=np_data,
- disable_group_convolution=True, # for end-to-end model compatibility
- enable_batchmatmul_unfold=True, # for end-to-end model compatibility
- )
- yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
- # Remove/rename TFLite models
- if self.args.int8:
- tmp_file.unlink(missing_ok=True)
- for file in f.rglob("*_dynamic_range_quant.tflite"):
- file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
- for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
- file.unlink() # delete extra fp16 activation TFLite files
- # Add TFLite metadata
- for file in f.rglob("*.tflite"):
- f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file)
- return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
- @try_export
- def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
- """YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
- import tensorflow as tf # noqa
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- f = self.file.with_suffix(".pb")
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
- frozen_func = convert_variables_to_constants_v2(m)
- frozen_func.graph.as_graph_def()
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
- return f, None
- @try_export
- def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
- """YOLO TensorFlow Lite export."""
- # BUG https://github.com/ultralytics/ultralytics/issues/13436
- import tensorflow as tf # noqa
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
- if self.args.int8:
- f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out
- elif self.args.half:
- f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out
- else:
- f = saved_model / f"{self.file.stem}_float32.tflite"
- return str(f), None
- @try_export
- def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
- """YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
- LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185")
- cmd = "edgetpu_compiler --version"
- help_url = "https://coral.ai/docs/edgetpu/compiler/"
- assert LINUX, f"export only supported on Linux. See {help_url}"
- if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
- LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
- for c in (
- "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
- 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | '
- "sudo tee /etc/apt/sources.list.d/coral-edgetpu.list",
- "sudo apt-get update",
- "sudo apt-get install edgetpu-compiler",
- ):
- subprocess.run(c if is_sudo_available() else c.replace("sudo ", ""), shell=True, check=True)
- ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
- LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
- f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
- cmd = (
- "edgetpu_compiler "
- f'--out_dir "{Path(f).parent}" '
- "--show_operations "
- "--search_delegate "
- "--delegate_search_step 30 "
- "--timeout_sec 180 "
- f'"{tflite_model}"'
- )
- LOGGER.info(f"{prefix} running '{cmd}'")
- subprocess.run(cmd, shell=True)
- self._add_tflite_metadata(f)
- return f, None
- @try_export
- def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
- """YOLO TensorFlow.js export."""
- check_requirements("tensorflowjs")
- if ARM64:
- # Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64
- check_requirements("numpy==1.23.5")
- import tensorflow as tf
- import tensorflowjs as tfjs # noqa
- LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
- f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
- f_pb = str(self.file.with_suffix(".pb")) # *.pb path
- gd = tf.Graph().as_graph_def() # TF GraphDef
- with open(f_pb, "rb") as file:
- gd.ParseFromString(file.read())
- outputs = ",".join(gd_outputs(gd))
- LOGGER.info(f"\n{prefix} output node names: {outputs}")
- quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
- with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
- cmd = (
- "tensorflowjs_converter "
- f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
- )
- LOGGER.info(f"{prefix} running '{cmd}'")
- subprocess.run(cmd, shell=True)
- if " " in f:
- LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.")
- # Add metadata
- yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_imx(self, prefix=colorstr("IMX:")):
- """YOLO IMX export."""
- gptq = False
- assert LINUX, (
- "export only supported on Linux. See https://developer.aitrios.sony-semicon.com/en/raspberrypi-ai-camera/documentation/imx500-converter"
- )
- if getattr(self.model, "end2end", False):
- raise ValueError("IMX export is not supported for end2end models.")
- if "C2f" not in self.model.__str__():
- raise ValueError("IMX export is only supported for YOLOv8n detection models")
- check_requirements(("model-compression-toolkit==2.1.1", "sony-custom-layers==0.2.0", "tensorflow==2.12.0"))
- check_requirements("imx500-converter[pt]==3.14.3") # Separate requirements for imx500-converter
- import model_compression_toolkit as mct
- import onnx
- from sony_custom_layers.pytorch.object_detection.nms import multiclass_nms
- try:
- out = subprocess.run(
- ["java", "--version"], check=True, capture_output=True
- ) # Java 17 is required for imx500-converter
- if "openjdk 17" not in str(out.stdout):
- raise FileNotFoundError
- except FileNotFoundError:
- c = ["apt", "install", "-y", "openjdk-17-jdk", "openjdk-17-jre"]
- if is_sudo_available():
- c.insert(0, "sudo")
- subprocess.run(c, check=True)
- def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)):
- for batch in dataloader:
- img = batch["img"]
- img = img / 255.0
- yield [img]
- tpc = mct.get_target_platform_capabilities(
- fw_name="pytorch", target_platform_name="imx500", target_platform_version="v1"
- )
- config = mct.core.CoreConfig(
- mixed_precision_config=mct.core.MixedPrecisionQuantizationConfig(num_of_images=10),
- quantization_config=mct.core.QuantizationConfig(concat_threshold_update=True),
- )
- resource_utilization = mct.core.ResourceUtilization(weights_memory=3146176 * 0.76)
- quant_model = (
- mct.gptq.pytorch_gradient_post_training_quantization( # Perform Gradient-Based Post Training Quantization
- model=self.model,
- representative_data_gen=representative_dataset_gen,
- target_resource_utilization=resource_utilization,
- gptq_config=mct.gptq.get_pytorch_gptq_config(n_epochs=1000, use_hessian_based_weights=False),
- core_config=config,
- target_platform_capabilities=tpc,
- )[0]
- if gptq
- else mct.ptq.pytorch_post_training_quantization( # Perform post training quantization
- in_module=self.model,
- representative_data_gen=representative_dataset_gen,
- target_resource_utilization=resource_utilization,
- core_config=config,
- target_platform_capabilities=tpc,
- )[0]
- )
- class NMSWrapper(torch.nn.Module):
- def __init__(
- self,
- model: torch.nn.Module,
- score_threshold: float = 0.001,
- iou_threshold: float = 0.7,
- max_detections: int = 300,
- ):
- """
- Wrapping PyTorch Module with multiclass_nms layer from sony_custom_layers.
- Args:
- model (nn.Module): Model instance.
- score_threshold (float): Score threshold for non-maximum suppression.
- iou_threshold (float): Intersection over union threshold for non-maximum suppression.
- max_detections (float): The number of detections to return.
- """
- super().__init__()
- self.model = model
- self.score_threshold = score_threshold
- self.iou_threshold = iou_threshold
- self.max_detections = max_detections
- def forward(self, images):
- # model inference
- outputs = self.model(images)
- boxes = outputs[0]
- scores = outputs[1]
- nms = multiclass_nms(
- boxes=boxes,
- scores=scores,
- score_threshold=self.score_threshold,
- iou_threshold=self.iou_threshold,
- max_detections=self.max_detections,
- )
- return nms
- quant_model = NMSWrapper(
- model=quant_model,
- score_threshold=self.args.conf or 0.001,
- iou_threshold=self.args.iou,
- max_detections=self.args.max_det,
- ).to(self.device)
- f = Path(str(self.file).replace(self.file.suffix, "_imx_model"))
- f.mkdir(exist_ok=True)
- onnx_model = f / Path(str(self.file).replace(self.file.suffix, "_imx.onnx")) # js dir
- mct.exporter.pytorch_export_model(
- model=quant_model, save_model_path=onnx_model, repr_dataset=representative_dataset_gen
- )
- model_onnx = onnx.load(onnx_model) # load onnx model
- for k, v in self.metadata.items():
- meta = model_onnx.metadata_props.add()
- meta.key, meta.value = k, str(v)
- onnx.save(model_onnx, onnx_model)
- subprocess.run(
- ["imxconv-pt", "-i", str(onnx_model), "-o", str(f), "--no-input-persistency", "--overwrite-output"],
- check=True,
- )
- # Needed for imx models.
- with open(f / "labels.txt", "w") as file:
- file.writelines([f"{name}\n" for _, name in self.model.names.items()])
- return f, None
- def _add_tflite_metadata(self, file):
- """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
- import flatbuffers
- try:
- # TFLite Support bug https://github.com/tensorflow/tflite-support/issues/954#issuecomment-2108570845
- from tensorflow_lite_support.metadata import metadata_schema_py_generated as schema # noqa
- from tensorflow_lite_support.metadata.python import metadata # noqa
- except ImportError: # ARM64 systems may not have the 'tensorflow_lite_support' package available
- from tflite_support import metadata # noqa
- from tflite_support import metadata_schema_py_generated as schema # noqa
- # Create model info
- model_meta = schema.ModelMetadataT()
- model_meta.name = self.metadata["description"]
- model_meta.version = self.metadata["version"]
- model_meta.author = self.metadata["author"]
- model_meta.license = self.metadata["license"]
- # Label file
- tmp_file = Path(file).parent / "temp_meta.txt"
- with open(tmp_file, "w") as f:
- f.write(str(self.metadata))
- label_file = schema.AssociatedFileT()
- label_file.name = tmp_file.name
- label_file.type = schema.AssociatedFileType.TENSOR_AXIS_LABELS
- # Create input info
- input_meta = schema.TensorMetadataT()
- input_meta.name = "image"
- input_meta.description = "Input image to be detected."
- input_meta.content = schema.ContentT()
- input_meta.content.contentProperties = schema.ImagePropertiesT()
- input_meta.content.contentProperties.colorSpace = schema.ColorSpaceType.RGB
- input_meta.content.contentPropertiesType = schema.ContentProperties.ImageProperties
- # Create output info
- output1 = schema.TensorMetadataT()
- output1.name = "output"
- output1.description = "Coordinates of detected objects, class labels, and confidence score"
- output1.associatedFiles = [label_file]
- if self.model.task == "segment":
- output2 = schema.TensorMetadataT()
- output2.name = "output"
- output2.description = "Mask protos"
- output2.associatedFiles = [label_file]
- # Create subgraph info
- subgraph = schema.SubGraphMetadataT()
- subgraph.inputTensorMetadata = [input_meta]
- subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1]
- model_meta.subgraphMetadata = [subgraph]
- b = flatbuffers.Builder(0)
- b.Finish(model_meta.Pack(b), metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
- metadata_buf = b.Output()
- populator = metadata.MetadataPopulator.with_model_file(str(file))
- populator.load_metadata_buffer(metadata_buf)
- populator.load_associated_files([str(tmp_file)])
- populator.populate()
- tmp_file.unlink()
- def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
- """YOLO CoreML pipeline."""
- import coremltools as ct # noqa
- LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
- _, _, h, w = list(self.im.shape) # BCHW
- # Output shapes
- spec = model.get_spec()
- out0, out1 = iter(spec.description.output)
- if MACOS:
- from PIL import Image
- img = Image.new("RGB", (w, h)) # w=192, h=320
- out = model.predict({"image": img})
- out0_shape = out[out0.name].shape # (3780, 80)
- out1_shape = out[out1.name].shape # (3780, 4)
- else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y
- out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
- out1_shape = self.output_shape[2], 4 # (3780, 4)
- # Checks
- names = self.metadata["names"]
- nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
- _, nc = out0_shape # number of anchors, number of classes
- assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
- # Define output shapes (missing)
- out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
- out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
- # Model from spec
- model = ct.models.MLModel(spec, weights_dir=weights_dir)
- # 3. Create NMS protobuf
- nms_spec = ct.proto.Model_pb2.Model()
- nms_spec.specificationVersion = 5
- for i in range(2):
- decoder_output = model._spec.description.output[i].SerializeToString()
- nms_spec.description.input.add()
- nms_spec.description.input[i].ParseFromString(decoder_output)
- nms_spec.description.output.add()
- nms_spec.description.output[i].ParseFromString(decoder_output)
- nms_spec.description.output[0].name = "confidence"
- nms_spec.description.output[1].name = "coordinates"
- output_sizes = [nc, 4]
- for i in range(2):
- ma_type = nms_spec.description.output[i].type.multiArrayType
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[0].lowerBound = 0
- ma_type.shapeRange.sizeRanges[0].upperBound = -1
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
- ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
- del ma_type.shape[:]
- nms = nms_spec.nonMaximumSuppression
- nms.confidenceInputFeatureName = out0.name # 1x507x80
- nms.coordinatesInputFeatureName = out1.name # 1x507x4
- nms.confidenceOutputFeatureName = "confidence"
- nms.coordinatesOutputFeatureName = "coordinates"
- nms.iouThresholdInputFeatureName = "iouThreshold"
- nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
- nms.iouThreshold = 0.45
- nms.confidenceThreshold = 0.25
- nms.pickTop.perClass = True
- nms.stringClassLabels.vector.extend(names.values())
- nms_model = ct.models.MLModel(nms_spec)
- # 4. Pipeline models together
- pipeline = ct.models.pipeline.Pipeline(
- input_features=[
- ("image", ct.models.datatypes.Array(3, ny, nx)),
- ("iouThreshold", ct.models.datatypes.Double()),
- ("confidenceThreshold", ct.models.datatypes.Double()),
- ],
- output_features=["confidence", "coordinates"],
- )
- pipeline.add_model(model)
- pipeline.add_model(nms_model)
- # Correct datatypes
- pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
- pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
- pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
- # Update metadata
- pipeline.spec.specificationVersion = 5
- pipeline.spec.description.metadata.userDefined.update(
- {"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
- )
- # Save the model
- model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
- model.input_description["image"] = "Input image"
- model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
- model.input_description["confidenceThreshold"] = (
- f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
- )
- model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
- model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
- LOGGER.info(f"{prefix} pipeline success")
- return model
- def add_callback(self, event: str, callback):
- """Appends the given callback."""
- self.callbacks[event].append(callback)
- def run_callbacks(self, event: str):
- """Execute all callbacks for a given event."""
- for callback in self.callbacks.get(event, []):
- callback(self)
- class IOSDetectModel(torch.nn.Module):
- """Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
- def __init__(self, model, im):
- """Initialize the IOSDetectModel class with a YOLO model and example image."""
- super().__init__()
- _, _, h, w = im.shape # batch, channel, height, width
- self.model = model
- self.nc = len(model.names) # number of classes
- if w == h:
- self.normalize = 1.0 / w # scalar
- else:
- self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
- def forward(self, x):
- """Normalize predictions of object detection model with input size-dependent factors."""
- xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
- return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|