123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- #include "inference.h"
- #include <memory>
- #include <opencv2/dnn.hpp>
- #include <random>
- namespace yolo {
- // Constructor to initialize the model with default input shape
- Inference::Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold) {
- model_input_shape_ = cv::Size(640, 640); // Set the default size for models with dynamic shapes to prevent errors.
- model_confidence_threshold_ = model_confidence_threshold;
- model_NMS_threshold_ = model_NMS_threshold;
- InitializeModel(model_path);
- }
- // Constructor to initialize the model with specified input shape
- Inference::Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold) {
- model_input_shape_ = model_input_shape;
- model_confidence_threshold_ = model_confidence_threshold;
- model_NMS_threshold_ = model_NMS_threshold;
- InitializeModel(model_path);
- }
- void Inference::InitializeModel(const std::string &model_path) {
- ov::Core core; // OpenVINO core object
- std::shared_ptr<ov::Model> model = core.read_model(model_path); // Read the model from file
- // If the model has dynamic shapes, reshape it to the specified input shape
- if (model->is_dynamic()) {
- model->reshape({1, 3, static_cast<long int>(model_input_shape_.height), static_cast<long int>(model_input_shape_.width)});
- }
- // Preprocessing setup for the model
- ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
- ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC").set_color_format(ov::preprocess::ColorFormat::BGR);
- ppp.input().preprocess().convert_element_type(ov::element::f32).convert_color(ov::preprocess::ColorFormat::RGB).scale({255, 255, 255});
- ppp.input().model().set_layout("NCHW");
- ppp.output().tensor().set_element_type(ov::element::f32);
- model = ppp.build(); // Build the preprocessed model
- // Compile the model for inference
- compiled_model_ = core.compile_model(model, "AUTO");
- inference_request_ = compiled_model_.create_infer_request(); // Create inference request
- short width, height;
- // Get input shape from the model
- const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
- const ov::Shape input_shape = inputs[0].get_shape();
- height = input_shape[1];
- width = input_shape[2];
- model_input_shape_ = cv::Size2f(width, height);
- // Get output shape from the model
- const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
- const ov::Shape output_shape = outputs[0].get_shape();
- height = output_shape[1];
- width = output_shape[2];
- model_output_shape_ = cv::Size(width, height);
- }
- // Method to run inference on an input frame
- void Inference::RunInference(cv::Mat &frame) {
- Preprocessing(frame); // Preprocess the input frame
- inference_request_.infer(); // Run inference
- PostProcessing(frame); // Postprocess the inference results
- }
- // Method to preprocess the input frame
- void Inference::Preprocessing(const cv::Mat &frame) {
- cv::Mat resized_frame;
- cv::resize(frame, resized_frame, model_input_shape_, 0, 0, cv::INTER_AREA); // Resize the frame to match the model input shape
- // Calculate scaling factor
- scale_factor_.x = static_cast<float>(frame.cols / model_input_shape_.width);
- scale_factor_.y = static_cast<float>(frame.rows / model_input_shape_.height);
- float *input_data = (float *)resized_frame.data; // Get pointer to resized frame data
- const ov::Tensor input_tensor = ov::Tensor(compiled_model_.input().get_element_type(), compiled_model_.input().get_shape(), input_data); // Create input tensor
- inference_request_.set_input_tensor(input_tensor); // Set input tensor for inference
- }
- // Method to postprocess the inference results
- void Inference::PostProcessing(cv::Mat &frame) {
- std::vector<int> class_list;
- std::vector<float> confidence_list;
- std::vector<cv::Rect> box_list;
- // Get the output tensor from the inference request
- const float *detections = inference_request_.get_output_tensor().data<const float>();
- const cv::Mat detection_outputs(model_output_shape_, CV_32F, (float *)detections); // Create OpenCV matrix from output tensor
- // Iterate over detections and collect class IDs, confidence scores, and bounding boxes
- for (int i = 0; i < detection_outputs.cols; ++i) {
- const cv::Mat classes_scores = detection_outputs.col(i).rowRange(4, detection_outputs.rows);
- cv::Point class_id;
- double score;
- cv::minMaxLoc(classes_scores, nullptr, &score, nullptr, &class_id); // Find the class with the highest score
- // Check if the detection meets the confidence threshold
- if (score > model_confidence_threshold_) {
- class_list.push_back(class_id.y);
- confidence_list.push_back(score);
- const float x = detection_outputs.at<float>(0, i);
- const float y = detection_outputs.at<float>(1, i);
- const float w = detection_outputs.at<float>(2, i);
- const float h = detection_outputs.at<float>(3, i);
- cv::Rect box;
- box.x = static_cast<int>(x);
- box.y = static_cast<int>(y);
- box.width = static_cast<int>(w);
- box.height = static_cast<int>(h);
- box_list.push_back(box);
- }
- }
- // Apply Non-Maximum Suppression (NMS) to filter overlapping bounding boxes
- std::vector<int> NMS_result;
- cv::dnn::NMSBoxes(box_list, confidence_list, model_confidence_threshold_, model_NMS_threshold_, NMS_result);
- // Collect final detections after NMS
- for (int i = 0; i < NMS_result.size(); ++i) {
- Detection result;
- const unsigned short id = NMS_result[i];
- result.class_id = class_list[id];
- result.confidence = confidence_list[id];
- result.box = GetBoundingBox(box_list[id]);
- DrawDetectedObject(frame, result);
- }
- }
- // Method to get the bounding box in the correct scale
- cv::Rect Inference::GetBoundingBox(const cv::Rect &src) const {
- cv::Rect box = src;
- box.x = (box.x - box.width / 2) * scale_factor_.x;
- box.y = (box.y - box.height / 2) * scale_factor_.y;
- box.width *= scale_factor_.x;
- box.height *= scale_factor_.y;
- return box;
- }
- void Inference::DrawDetectedObject(cv::Mat &frame, const Detection &detection) const {
- const cv::Rect &box = detection.box;
- const float &confidence = detection.confidence;
- const int &class_id = detection.class_id;
-
- // Generate a random color for the bounding box
- std::random_device rd;
- std::mt19937 gen(rd());
- std::uniform_int_distribution<int> dis(120, 255);
- const cv::Scalar &color = cv::Scalar(dis(gen), dis(gen), dis(gen));
-
- // Draw the bounding box around the detected object
- cv::rectangle(frame, cv::Point(box.x, box.y), cv::Point(box.x + box.width, box.y + box.height), color, 3);
-
- // Prepare the class label and confidence text
- std::string classString = classes_[class_id] + std::to_string(confidence).substr(0, 4);
-
- // Get the size of the text box
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 0.75, 2, 0);
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
-
- // Draw the text box
- cv::rectangle(frame, textBox, color, cv::FILLED);
-
- // Put the class label and confidence text above the bounding box
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 0.75, cv::Scalar(0, 0, 0), 2, 0);
- }
- } // namespace yolo
|