yolov10l.yaml 1.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # YOLOv10l object detection model with P3/8 - P5/32 outputs
  3. # Model docs: https://docs.ultralytics.com/models/yolov10
  4. # Task docs: https://docs.ultralytics.com/tasks/detect
  5. # Parameters
  6. nc: 80 # number of classes
  7. scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  8. # [depth, width, max_channels]
  9. l: [1.00, 1.00, 512]
  10. backbone:
  11. # [from, repeats, module, args]
  12. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  13. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  14. - [-1, 3, C2f, [128, True]]
  15. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  16. - [-1, 6, C2f, [256, True]]
  17. - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  18. - [-1, 6, C2f, [512, True]]
  19. - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  20. - [-1, 3, C2fCIB, [1024, True]]
  21. - [-1, 1, SPPF, [1024, 5]] # 9
  22. - [-1, 1, PSA, [1024]] # 10
  23. # YOLOv10.0n head
  24. head:
  25. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  26. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  27. - [-1, 3, C2fCIB, [512, True]] # 13
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  30. - [-1, 3, C2f, [256]] # 16 (P3/8-small)
  31. - [-1, 1, Conv, [256, 3, 2]]
  32. - [[-1, 13], 1, Concat, [1]] # cat head P4
  33. - [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
  34. - [-1, 1, SCDown, [512, 3, 2]]
  35. - [[-1, 10], 1, Concat, [1]] # cat head P5
  36. - [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
  37. - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)