nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n' # [depth, width, max_channels] n: [0.50, 0.25, 1024] # Nano s: [0.50, 0.50, 1024] # Small l: [1.00, 1.00, 512] # Large x: [1.00, 1.50, 512] # Extra Large backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2, 1, 2]] # 1-P2/4 - [-1, 2, DSC3k2, [256, False, 0.25]] - [-1, 1, Conv, [256, 3, 2, 1, 4]] # 3-P3/8 - [-1, 2, DSC3k2, [512, False, 0.25]] - [-1, 1, DSConv, [512, 3, 2]] # 5-P4/16 - [-1, 4, A2C2f, [512, True, 4]] - [-1, 1, DSConv, [1024, 3, 2]] # 7-P5/32 - [-1, 4, A2C2f, [1024, True, 1]] # 8 head: - [[4, 6, 8], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]] - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [ 9, 1, DownsampleConv, []] - [[6, 9], 1, FullPAD_Tunnel, []] #12 - [[4, 10], 1, FullPAD_Tunnel, []] #13 - [[8, 11], 1, FullPAD_Tunnel, []] #14 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 12], 1, Concat, [1]] # cat backbone P4 - [-1, 2, DSC3k2, [512, True]] # 17 - [[-1, 9], 1, FullPAD_Tunnel, []] #18 - [17, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 13], 1, Concat, [1]] # cat backbone P3 - [-1, 2, DSC3k2, [256, True]] # 21 - [10, 1, Conv, [256, 1, 1]] - [[21, 22], 1, FullPAD_Tunnel, []] #23 - [-1, 1, Conv, [256, 3, 2]] - [[-1, 18], 1, Concat, [1]] # cat head P4 - [-1, 2, DSC3k2, [512, True]] # 26 - [[-1, 9], 1, FullPAD_Tunnel, []] - [26, 1, Conv, [512, 3, 2]] - [[-1, 14], 1, Concat, [1]] # cat head P5 - [-1, 2, DSC3k2, [1024,True]] # 30 (P5/32-large) - [[-1, 11], 1, FullPAD_Tunnel, []] - [[23, 27, 31], 1, Detect, [nc]] # Detect(P3, P4, P5)